Plumbing and Other Utilities

Rob Pike

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

Plumbing is a new mechanism for inter-process communication in Plan 9,
specifically the passing of messages between interactive programs as
part of the user interface. Although plumbing shares some properties
with familiar notions such as cut and paste, it offers a more general data
exchange mechanism without imposing a particular user interface.

The core of the plumbing system is a program called the plumber, which
handles all messages and dispatches and reformats them according to
configuration rules written in a special-purpose language. This approach
allows the contents and context of a piece of data to define how it is han-
dled. Unlike with drag and drop or cut and paste, the user doesn’t need
to deliver the data; the contents of a plumbing message, as interpreted
by the plumbing rules, determine its destination.

The plumber has an unusual architecture: it is a language-driven file
server. This design has distinct advantages. It makes plumbing easy to
add to an existing, Unix-like command environment; it guarantees uni-
form handling of inter-application messages; it off-loads from those
applications most of the work of extracting and dispatching messages;
and it works transparently across a network.

Introduction

Data moves from program to program in myriad ways. Command-line arguments, shell
pipe lines, cut and paste, drag and drop, and other user interface techniques all provide
some form of interprocess communication. Then there are tricks associated with special
domains, such as HTML hyperlinks or the heuristics mail readers use to highlight URLs
embedded in mail messages. Some systems provide implicit ways to automate the
attachment of program to data—the best known examples are probably the resource
forks in MacOS and the file name extension ‘associations’ in Microsoft Windows—but in
practice humans must too often carry their data from program to program.

Why should a human do the work? Usually there is one obvious thing to do with a piece
of data, and the data itself suggests what this is. Resource forks and associations speak
to this issue directly, but statically and narrowly and with little opportunity to control the
behavior. Mechanisms with more generality, such as cut and paste or drag and drop,
demand too much manipulation by the user and are (therefore) too error-prone.

We want a system that, given a piece of data, hands it to the appropriate application by
default with little or no human intervention, while still permitting the user to override
the defaults if desired.

The plumbing system is an attempt to address some of these issues in a single, coher-
ent, central way. It provides a mechanism for formatting and sending arbitrary

-2

messages between applications, typically interactive programs such as text editors, web
browsers, and the window system, under the control of a central message-handling
server called the plumber. Interactive programs provide application-specific connec-
tions to the plumber, triggering with minimal user action the transfer of data or control
to other programs. The result is similar to a hypertext system in which all the links are
implicit, extracted automatically by examining the data and the user’s actions. It obvi-
ates cut and paste and other such hand-driven interprocess communication mecha-
nisms. Plumbing delivers the goods to the right place automatically.

Overview

The plumber is implemented as a Plan 9 file server [Pike93]; programs send messages
by writing them to the plumber’s file /mnt/plumb/send, and receive messages by
reading them from ports, which are other plumber files in /mnt/plumb. For example,
/mnt/plumb/edit is by convention the file from which a text editor reads messages
requesting it to open and display a file for editing. (See Figure 1.)

ProgramA

Browser

H

send image
plumber -
newmail

Viewer

(o)

ProgramB

ProgramC

]

Figure 1. The plumber controls the flow of messages between applications. Programs write
to the file send and receive on ‘ports’ of various names representing services such as
edit or web. Although the figure doesn’t illustrate it, some programs may both send and
receive messages, and some ports are read by multiple applications.

The plumber takes messages from the send file and interprets their contents using
rules defined by a special-purpose pattern-action language. The language specifies any
rewriting of the message that is to be done by the plumber and defines how to dispose
of a message, such as by sending it to a port or starting a new process to handle it.

The behavior is best described by example. Imagine that the user has, in a terminal
emulator window, just run a compilation that has failed:

% make
cc —c rmstar.c
rmstar.c:32: syntax error

The user points the typing cursor somewhere in the string rmstar.c:32: and exe-
cutes the plumb menu entry. This causes the terminal emulator to format a plumbing
message containing the entire string surrounding the cursor, rmstar:32:, and to

-3-

write it to /mnt/plumb/send. The plumber receives this message and compares it
sequentially to the various patterns in its configuration. Eventually, it will find one that
breaks the string into pieces, rmstar.c, a colon, 32, and the final colon. Other asso-
ciated patterns verify that rmstar. c is a file in the current directory of the program
generating the message, and that 32 looks like a line number within it. The plumber
rewrites the message, setting the data to the string rmstar . c and attaching an indica-
tion that 32 is a line number to display. Finally, it sends the resulting message to the
edit port. The text editor picks up the message, opens rmstar.c (if it’s not already
open) and highlights line 32, the location of the syntax error.

From the user’s point of view, this process is simple: the error message appears, it is
‘plumbed’, and the editor jumps to the problem.

Of course, there are many different ways to cause compiler messages to pop up the
source of an error, but the design of the plumber addresses more general issues than
the specific goal of shortening the compile/debug/edit cycle. It facilitates the general
exchange of data among programs, interactive or otherwise, throughout the environ-
ment, and its architecture—a central, language-driven file server—although unusual,
has distinct advantages. It makes plumbing easy to add to an existing, Unix-like com-
mand environment; it guarantees uniform handling of inter-application messages; it
off-loads from those applications most of the work of extracting and dispatching mes-
sages; and it works transparently and effortlessly across a network.

This paper is organized bottom-up, beginning with the format of the messages and pro-
ceeding through the plumbing language, the handling of messages, and the interactive
user interface. The last sections discuss the implications of the design and compare the
plumbing system to other environments that provide similar services.

Format of messages

Since the language that controls the plumber is defined in terms of the contents of
plumbing messages, we begin by describing their layout.

Plumbing messages have a fixed-format textual header followed by a free-format data
section. The header consists of six lines of text, in set order, each specifying a property
of the message. Any line may be blank except the last, which is the length of the data
portion of the message, as a decimal string. The lines are, in order:

The source application, the name of the program generating the message.

The destination port, the name of the port to which the messages should be sent.
The working directory in which the message was generated.

The type of the data, analogous to a MIME type, such as text or image/gif.

Attributes of the message, given as blank-separated name=value pairs. The values
may be quoted to protect blanks or quotes; values may not contain newlines.

The length of the data section, in bytes.

Here is a sample message, one that (conventionally) tells the editor to open the file
/usr/rob/src/mem. c and display line 27 within it:

plumbtest
edit
/usr/rob/src
text

addr=27

5

mem. cC

Because in general it need not be text, the data section of the message has no terminat-
ing newline.

-4 -

A library interface simplifies the processing of messages by translating them to and
from a data structure, P1lumbmsg, defined like this:

typedef struct Plumbattr Plumbattr;
typedef struct Plumbmsg Plumbmsg;

struct Plumbmsg

{
char *srcC; /* source application */
char *dst; /* destination port */
char *wdir; /* working directory */
char *type; /* type of data */
Plumbattr *attr; /* attribute list */
int ndata; /* #bytes of data */
char *data;

};

struct Plumbattr

{
char *name;
char *value;
Plumbattr *next;

3

The library also includes routines to send a message, receive a message, manipulate the
attribute list, and so on.

The Language

An instance of the plumber runs for each user on each terminal or workstation. It
begins by reading its rules from the file 1ib/plumbing in the user’s home directory,
which in turn may use include statements to interpolate macro definitions and rules
from standard plumbing rule libraries stored in /sys/1ib/plumb.

The rules control the processing of messages. They are written in a pattern-action lan-
guage comprising a sequence of blank-line-separated rule sets, each of which contains
one or more patterns followed by one or more actions. Each incoming message is com-
pared against the rule sets in order. If all the patterns within a rule set succeed, one of
the associated actions is taken and processing completes.

The syntax of the language is straightforward. Each rule (pattern or action) has three
components, separated by white space: an object, a verb, and optional arguments. The
object identifies a part of the message, such as the source application (src), or the data
portion of the message (data), or the rule’s own arguments (arg); or it is the keyword
plumb, which introduces an action. The verb specifies an operation to perform on the
object, such as the word ‘is’ to require precise equality between the object and the
argument, or ‘isdixr’ to require that the object be the name of a directory.

For instance, this rule set sends messages containing the names of files ending in
.gif, .jpg, etc. to a program, page, to display them; it is analogous to a Windows
association rule:

image files go to page

type is text

data matches ’'[a—-zA-Z0-9_\-./]1+’

data matches ’'([a—zA-Z0-9_\-./]1+)\.(Jpe?glgif|bit|tiff|ppm)’
arg isfile $0

plumb to image

plumb client page —-wi

(Lines beginning with # are commentary.) Consider how this rule handles the following
message, annotated down the left column for clarity:

src plumbtest

dst

wdir /usr/rob/pics
type text

attr

ndata 9

data horse.gif

The is verb specifies a precise match, and the type field of the message is the string
text, so the first pattern succeeds. The matches verb invokes a regular expression
pattern match of the object (here data) against the argument pattern. Both matches
patterns in this rule set will succeed, and in the process set the variables $0 to the
matched string, $1 to the first parenthesized submatch, and so on (analogous to &, \1,
etc. in ed’s regular expressions). The pattern arg isfile $0 verifies that the named
file, horse.gif, is an actual file in the directory /usr/rob/pics. If all the pat-
terns succeed, one of the actions will be executed.

There are two actions in this rule set. The plumb to rule specifies image as the desti-
nation port of the message. By convention, the plumber mounts its services in the
directory /mnt/plumb, so in this case if the file /mnt/plumb/image has been
opened, the message will be made available to the program reading from it. Note that
the message does not name a port, but the rule set that matches the message does, and
that is sufficient to dispatch the message. If on the other hand a message matches no
rule but has an explicit port mentioned, that too is sufficient.

If no client has opened the image port, that is, if the program page is not already run-
hing, the plumb client action gives the execution script to start the application and
send the message on its way; the —wi arguments tell page to create a window and to
receive its initial arguments from the plumbing port. The process by which the plumber
starts a program is described in more detail in the next section.

It may seem odd that there are two matches rules in this example. The reason is
related to the way the plumber can use the rules themselves to refine the data in the
message, somewhat in the manner of Structural Regular Expressions [Pike87a]. For
example, consider what happens if the cursor is at the last character of

% make nightmare>horse.gif

and the user asks to plumb what the cursor is pointing at. The program creating the
plumbing message—in this case the terminal emulator running the window—can send
the entire white-space-delimited string nightmare>horse.gif or even the entire
line, and the combination of matches rules can determine that the user was referring
to the string horse.gif. The user could of course select the entire string
horse.gif, but it’s more convenient just to point in the general location and let the
machine figure out what should be done. The process is as follows.

The application generating the message adds a special attribute to the message, named
click, whose numerical value is the offset of the cursor—the selection point—within
the data string. This attribute tells the plumber two things: first, that the regular
expressions in matches rules should be used to identify the relevant data; and second,
approximately where the relevant data lies. The plumber will then use the first
matches pattern to identify the longest leftmost match that touches the cursor, which
will extract the string horse.gif, and the second pattern will then verify that that
names a picture file. The rule set succeeds and the data is winnowed to the matching
substring before being sent to its destination.

Each matches pattern within a given rule set must match the same portion of the
string, which guarantees that the rule set fails to match a string for which the second
pattern matches only a portion. For instance, our example rule set should not execute if
the data is the string horse.gift, and although the first pattern will match

-6 -

horse.gift, the second will match only horse. gif and the rule set will fail.

The same approach of multiple matches rules can be used to exclude, for instance, a
terminal period from a file name or URL, so a file name or URL at the end of a sentence
is recognized properly.

If a click attribute is not specified, all patterns must match the entire string, so the
user has an option: he or she may select exactly what data to send, or may instead indi-
cate where the data is by clicking the selection button on the mouse and letting the
machine locate the URL or image file name within the text. In other words, the user can
control the contents of the message precisely when required, but the default, simplest
action in the user interface does the right thing most of the time.

How Messages are Handled in the Plumber

An application creates a message header, fills in whatever fields it wishes to define,
attaches the data, and writes the result to the file send in the plumber’s service direc-
tory, /mnt/plumb. The plumber receives the message and applies the plumbing rules
successively to it. When a rule set matches, the message is dispatched as indicated by
that rule set and processing continues with the next message. If no rule set matches
the message, the plumber indicates this by returning a write error to the application,
that is, the write to /mnt/plumb/send fails, with the resulting error string describing
the failure. (Plan 9 uses strings rather than pre-defined numbers to describe error con-
ditions.) Thus a program can discover whether a plumbing message has been sent suc-
cessfully.

After a matching rule set has been identified, the plumber applies a series of rewriting
steps to the message. Some rewritings are defined by the rule set; others are implicit.
For example, if the message does not specify a destination port, the outgoing message
will be rewritten to identify it. If the message does specify the port, the rule set will only
match if any plumb to action in the rule set names the same port. (If it matches no
rule sets, but mentions a port, it will be sent there unmodified.)

The rule set may contain actions that explicitly rewrite components of the message.
These may modify the attribute list or replace the data section of the message. Here is
a sample rule set that does both. It matches strings of the form plumb.h or
plumb.h:27. If that string identifies a file in the standard C include directory,
/sys/include, perhaps with an optional line number, the outgoing message is
rewritten to contain the full path name and an attribute, addr, to hold the line number:

.h files are looked up in /sys/include and passed to edit
type is text

data matches ’'([a—-zA-Z0-9]+\.h)(:([0-9]+))?’

arg isfile /sys/include/$1

data set /sys/include/$1

attr add addr=$3

plumb to edit

The data set rule replaces the contents of the data, and the attr add rule adds a
new attribute to the message. The intent of this rule is to permit one to plumb an
include file name in a C program to trigger the opening of that file, perhaps at a speci-
fied line, in the text editor. A variant of this rule, discussed below, tells the editor how
to interpret syntax errors from the compiler, or the output of grep —n, both of which
use a fixed syntax file: line to identify a line of source.

The Plan 9 text editors interpret the addxr attribute as the definition of which portion of
the file to display. In fact, the real rule includes a richer definition of the address syn-
tax, so one may plumb strings such as plumb.h:/plumbsend (using a regular
expression after the /) to pop up the declaration of a function in a C header file.

Another form of rewriting is that the plumber may modify the attribute list of the

-7 -

message to clarify how to handle the message. The primary example of this involves
the treatment of the click attribute, described in the previous section. If the message
contains a click attribute and the matching rule set uses it to extract the matching
substring from the data, the plumber deletes the click attribute and replaces the data
with the matching substring.

Once the message is rewritten, the actions of the matching rule set are examined. If the
rule set contains a plumb to action and the corresponding port is open—that is, if a
program is already reading from that port—the message is delivered to the port. The
application will receive the message and handle it as it sees fit. If the port is not open, a
plumb start or plumb client action will start a new program to handle the mes-
sage.

The plumb start action is the simpler: its argument specifies a command to run
instead of passing on the message; the message is discarded. Here for instance is a
rule that, given the process id (pid) of an existing process, starts the acid debugger
[Wint94] in a new window to examine that process:

processes go to acid (assuming strlen(pid) >= 2)
type is text

data matches ’'[a-zA-7Z0-9.:_\—-/]1+’

data matches ’[0-9][0-9]+’

arg isdir /proc/$0

plumb start window acid $0

(Note the use of multiple matches rules to avoid misfires from strings like
party.1999.) The arg isdir rule checks that the pid represents a running process
(or broken one; Plan 9 does not create core files but leaves broken processes around
for debugging) by checking that the process file system has a directory for that pid
[Kill84]. Using this rule, one may plumb the pid string printed by the ps command or
by the operating system when the program breaks; the debugger will then start auto-
matically.

The other startup action, plumb client, is used when a program will read messages
from the plumbing port. For example, text editors can read files specified as command
arguments, so one could use a plumb start rule to begin editing a file. If, however,
the editor will read messages from the edit plumbing port, letting it read the message
from the port insures that it uses other information in the message, such as the line
number to display. The plumb client action is therefore like plumb start, but
keeps the message around for delivery when the application opens the port. Here is the
full rule set to pass a regular file to the text editor:

existing files, possibly tagged by address, go to editor
type is text

data matches ’([.a-zA-Z0-9_/\-]1*[a-zA-Z0-9_/\-1)(’ $addr’)?’
arg isfile $1

data set $1

attr add addr=$3

plumb to edit

plumb client window $editor

If the editor is already running, the plumb to rule causes it to receive the message on
the port. If not, the command ‘window $editoxr’ will create a new window (using the
Plan 9 program window) to run the editor, and once that starts it will open the edit
plumbing port as usual and discover this first message already waiting.

The variables $editor and $addr in this rule set are macros defined in the plumbing
rules file; they specify the name of the user’s favorite text editor and a regular expres-
sion that matches that editor’s address syntax, such as line numbers and patterns. This
rule set lives in a library of shared plumbing rules that users’ private rules can build on,

-8-

so the rule set needs to be adaptable to different editors and their address syntax. The
macro definitions for Acme and Sam [Pike94,Pike87b] look like this:

editor=acme

or editor=sam
addrelem="((#?[0-9]1+) | (/[A-Za—z0-9_\AJ+/?)I[.$1)’
addr=:($addrelem([, ;+\—-]%addrelem) *)

Finally, the application reads the message from the appropriate port, such as
/mnt/plumb/edit, unpacks it, and goes to work.

Message Delivery

In summary, a message is delivered by writing it to the send file and having the
plumber, perhaps after some rewriting, send it to the destination port or start a new
application to handle it. If no destination can be found by the plumber, the original
write to the send file will fail, and the application will know the message could not be
delivered.

If multiple applications are reading from the destination port, each will receive an identi-
cal copy of the message; that is, the plumber implements fan-out. The number of mes-
sages delivered is equal to the number of clients that have opened the destination port.
The plumber queues the messages and makes sure that each application that opened
the port before the message was written gets exactly one copy.

This design minimizes blocking in the sending applications, since the write to the send
file can complete as soon as the message has been queued for the appropriate port. If
the plumber waited for the message to be read by the recipient, the sender could block
unnecessarily. Unfortunately, this design also means that there is no way for a sender
to know when the message has been handled; in fact, there are cases when the message
will not be delivered at all, such as if the recipient exits while there are still messages in
the queue. Since the plumber is part of a user interface, and not an autonomous mes-
sage delivery system, the decision was made to give the non-blocking property priority
over reliability of message delivery. In practice, this tradeoff has worked out well: appli-
cations almost always know when a message has failed to be delivered (the write fails
because no destination could be found), and those occasions when the sender believes
incorrectly that the message has been delivered are both extremely rare and easily rec-
ognized by the user—usually because the recipient application has exited.

The Rules File

The plumber begins execution by reading the user’s startup plumbing rules file,
lib/plumbing. Since the plumber is implemented as a file server, it can also present
its current rules as a dynamic file, a design that provides an easily understood way to
maintain the rules.

The file /mnt/plumb/rules is the text of the rule set the plumber is currently using,
and it may be edited like a regular file to update those rules. To clear the rules, trun-
cate that file; to add a new rule set, append to it:

% echo ’type is text
data is self-destruct
plumb start rm —rf $HOME’ >> /mnt/plumb/rules

This rule set will take effect immediately. If it has a syntax error, the write will fail with
an error message from the plumber, such as ‘malformed rule’ or 'undefined verb’.

To restore the plumber to its startup configuration,
% cp /usr/$user/lib/plumbing /mnt/plumb/rules

For more sophisticated changes, one can of course use a regular text editor to modify

/mnt/plumb/rules.

This simple way of maintaining an active service could profitably be adopted by other
systems. It avoids the need to reboot, to update registries with special tools, or to send
asynchronous signals to critical programs.

The User Interface

One unusual property of the plumbing system is that the user interface that programs
provide to access it can vary considerably, yet the result is nonetheless a unifying force
in the environment. Shells talk to editors, image viewers, and web browsers; debuggers
talk to editors; editors talk to themselves; and the window system talks to everybody.

The plumber grew out of some of the ideas of the Acme editor/window-system/user
interface [Pike94], in particular its ‘acquisition’ feature. With a three-button mouse,
clicking the right button in Acme on a piece of text tells Acme to get the thing being
pointed to. If it is a file name, open the file; if it is a directory, open a viewer for its con-
tents; if a line number, go to that line; if a regular expression, search for it. This one-
click access to anything describable textually was very powerful but had several limita-
tions, of which the most important were that Acme’s rules for interpreting the text (that
is, the implicit hyperlinks) were hard-wired and inflexible, and that they only applied to
and within Acme itself. One could not, for example, use Acme’s power to open an
image file, since Acme is a text-only system.

The plumber addresses these limitations, even with Acme itself: Acme now uses the
plumber to interpret the right button clicks for it. When the right button is clicked on
some text, Acme constructs a plumbing message much as described above, using the
click attribute and the white-space-delimited text surrounding the click. It then
writes the message to the plumber; if the write succeeds, all is well. If not, it falls back
to its original, internal rules, which will result in a context search for the word within the
current document.

If the message is sent successfully, the recipient is likely to be Acme itself, of course:
the request may be to open a file, for example. Thus Acme has turned the plumber into
an external component of its own operation, while expanding the possibilities; the oper-
ation might be to start an image viewer to open a picture file, something Acme cannot
do itself. The plumber expands the power of Acme’s original user interface.

Traditional menu-driven programs such as the text editor Sam [Pike87b] and the default
shell window of the window system 8% [Pike91] cannot dedicate a mouse button solely
to plumbing, but they can certainly dedicate a menu entry. The editing menu for such
programs now contains an entry, plumb, that creates a plumbing message using the
current selection. (Acme manages to send a message by clicking on the text with one
button; other programs require a click with the select button and then a menu opera-
tion.) For example, after this happens in a shell window:

% make
cc —-c shaney.c
shaney.c:232: i undefined

one can click anywhere on the string shaney.c: 232, execute the p1lumb menu entry,
and have line 232 appear in the text editor, be it Sam or Acme—whichever has the
edit port open. (If this were an Acme shell window, it would be sufficient to right-
click on the string.)

[An interesting side line is how the window system knows what directory the shell is run-
hing in; in other words, what value to place in the wdir field of the plumb message.
Recall that 8% is, like many Plan 9 programs, a file server. It now serves a new file,
/dev/wdir, that is private to each window. Programs, in particular the Plan 9 shell,
rc, can write that file to inform the window system of its current directory. When a cd

-10 -

command is executed in an interactive shell, rc updates the contents of /dev/wdir
and plumbing can proceed with local file names.]

Of course, users can plumb image file names, process ids, URLs, and other items—any
string whose syntax and disposition are defined in the plumbing rules file. An example
of how the pieces fit together is the way Plan 9 now handles mail, particularly MIME-
encoded messages.

When a new mail message arrives, the mail receiver process sends a plumbing message
to the newmail port, which notifies any interested process that new mail is here. The
plumbing message contains information about the mail, including its sender, date, and
current location in the file system. The interested processes include a program, faces,
that gives a graphical display of the mail box using faces to represent the senders of
messages [PiPr85], as well as interactive mail programs such as the Acme mail viewer
[Pike94]. The user can then click on the face that appears, and the faces program will
send another plumbing message, this time to the showmail port. Here is the rule for
that port:

faces —> new mail window for message

type is text

data matches ’'[a-zA-Z0-9_\-./]+’

data matches ’/mail/fs/[a-zA-Z0-9/]1+/[0-9]+’
plumb to showmail

plumb start window edmail -s $0

If a program, such as the Acme mail reader, is reading that port, it will open a new win-
dow in which to display the message. If not, the plumb start rule will create a new
window and run edmail, a conventional mail reading process, to examine it. Notice
how the plumbing connects the components of the interface together the same way
regardless of which components are actually being used to view mail.

There is more to the mail story. Naturally, mail boxes in Plan 9 are treated as little file
systems, which are synthesized on demand by a special-purpose file server that takes a
flat mail box file and converts it into a set of directories, one per message, with compo-
nent files containing the header, body, MIME information, and so on. Multi-part MIME
messages are unpacked into multi-level directories, like this:

% 1ls -1 /mail/fs/mbox/25

d-r-xr-xr-x M 20 rob rob 0 Nov 21 13:06 /mail/fs/mbox/25/1
d—-r—-xr-xr-x M 20 rob rob 0 Nov 21 13:06 /mail/fs/mbox/25/2
——r——1r—71—— M 20 rob Tr0b 28678 Nov 21 13:06 /mail/fs/mbox/25/body
——r——r——Tr— M 20 rob rob 0 Nov 21 13:06 /mail/fs/mbox/25/cc
% mail
25 messages

25

From: presotto
Date: Sun Nov 21 13:05:51 EST 1999
To: rob

Check this out.

===> 2/ (image/jpeg) [inline]
/mail/fs/mbox/25/2/fabio.jpg

Since the components are all (synthetic) files, the user can plumb the pieces to view
embedded pictures, URLs, and so on. Note that the mail program can plumb the con-
tents of inline attachments automatically, without user interaction; in other words,
plumbing lets the mailer handle multimedia data without itself interpreting it.

-11 -

At a more mundane level, a shell command, plumb, can be used to send messages:

% cd /usr/rob/src
% plumb mem.c

will send the appropriate message to the edit port. A surprising use of the plumb
command is in actions within the plumbing rules file. In our lab, we commonly receive
Microsoft Word documents by mail, but we do not run Microsoft operating systems on
our machines so we cannot view them without at least rebooting. Therefore, when a
Word document arrives in mail, we could plumb the .doc file but the text editor could
not decode it. However, we have a program, doc2txt, that decodes the Word file for-
mat to extract and format the embedded text. The solution is to use plumb in a
plumb start action to invoke doc2txt on .doc files and synthesize a plain text
file:

rule set for microsoft word documents
type is text
data matches ’'[a—-zA-Z0-9_\-./]1+’
data matches ’([a-zA-Z0-9_\-./]+)\.doc’
arg isfile $0
plumb start doc2txt $data | \
plumb —-i —-d edit —-a action=showdata —-a filename=$0

The arguments to plumb tell it to take standard input as its data rather than the text of
the arguments (—i), define the destination port (—d edit), and set a conventional
attribute so the editor knows to show the message data itself rather than interpret it as
a file name (—a action=showdata) and provide the original file name (-a
filename=3$0). Now when a user plumbs a .doc file the plumbing rules run a pro-
cess to extract the text and send it as a temporary file to the editor for viewing. It’s
imperfect, but it’s easy and it beats rebooting.

Another simple example is a rule that turns man pages into hypertext. Manual page
entries of the form plumber (1) can be clicked on to pop up a window containing the
formatted ‘man page’. That man page will in turn contain more such citations, which
will also be clickable. The rule is a little like that for Word documents:

man index entries are synthesized
type is text
data matches ’'([a—zA-Z0-9_\-./]1+)\CCL[O0-91)O\D"’
plumb start man $2 $1 | \
plumb —-i —-d edit —-a action=showdata —-a filename=/man/$1($2)

There are many other inventive uses of plumbing. One more should give some of the
flavor. We have a shell script, src, that takes as argument the name of an executable
binary file. It examines the symbol table of the binary to find the source file from which
it was compiled. Since the Plan 9 compilers place full source path names in the symbol
table, src can discover the complete file name. That is then passed to plumb, com-
plete with the line number to find the symbol main. For example,

% src plumb

is all it takes to pop up an editor window on the main routine of the plumb command,
beginning at line 39 of /sys/src/cmd/plumb/plumb.c. Like most uses of
plumbing, this is not a breakthrough in functionality, but it is a great convenience.

Why This Architecture?

The design of the plumbing system is peculiar: a centralized language-based file server
does most of the work, while compared to other systems the applications themselves
contribute relatively little. This architecture is deliberate, of course.

That the plumber’s behavior is derived from a linguistic description gives the system

12 -

great flexibility and dynamism—rules can be added and changed at will, without
rebooting—but the existence of a central library of rules ensures that, for most users,
the environment behaves in well-established ways.

That the plumber is a file server is perhaps the most unusual aspect of its design, but is
also one of the most important. Messages are passed by regular 1/0 operations on files,
so no extra technology such as remote procedure call or request brokers needs to be
provided; messages are transmitted by familiar means. Almost every service in Plan 9 is
a file server, so services can be exported trivially using the system’s remote file system
operations [Pike93]. The plumber is no exception; plumbing messages pass routinely
across the network to remote applications without any special provision, in contrast to
some commercial IPC mechanisms that become significantly more complex when they
involve multiple machines. As | write this, my window system is talking to applications
running on three different machines, but they all share a single instance of the plumber
and so can interoperate to integrate my environment. Plan 9 uses a shared file name
space to combine multiple networked machines—compute servers, file servers, and
interactive workstations—into a single computing environment; plumbing’s design as a
file server is a natural by-product of, and contributor to, the overall system architecture
[Pike92].

The centrality of the plumber is also unusual. Other systems tend to let the applications
determine where messages will go; consider mail readers that recognize and highlight
URLs in the messages. Why should just the mail readers do this, and why should they
just do it for URLs? (Acme was guilty of similar crimes.) The plumber, by removing such
decisions to a central authority, guarantees that all applications behave the same and
simultaneously frees them all from figuring out what’s important. The ability for the
plumber to excerpt useful data from within a message is critical to the success of this
model.

The entire system is remarkably small. The plumber itself is only about two thousand
lines of C code. Most applications work fine in a plumbing environment without know-
ing about it at all; some need trivial changes such as to standardize their error output; a
few need to generate and receive plumbing messages. But even to add the ability to
send and receive messages in a program such as text editor is short work, involving typ-
ically a few dozen lines of code. Plumbing fits well into the existing environment.

But plumbing is new and it hasn’t been pushed far enough yet. Most of the work so far
has been with textual messages, although the underlying system is capable of handling
general data. We plan to reimplement some of the existing data movement operations,
such as cut and paste or drag and drop, to use plumbing as their exchange mechanism.
Since the plumber is a central message handler, it is an obvious place to store the ‘clip-
board’. The clipboard could be built as a special port that holds onto messages rather
than deleting them after delivery. Since the clipboard would then be holding a plumbing
message rather than plain text, as in the current Plan 9 environment, it would become
possible to cut and paste arbitrary data without providing new mechanism. In effect, we
would be providing a new user interface to the existing plumbing facilities.

Another possible extension is the ability to override plumbing operations interactively.
Originally, the plan was to provide a mechanism, perhaps a pop-up menu, that one
could use to direct messages, for example to send a PostScript file to the editor rather
than the PostScript viewer by naming an explicit destination in the message. Although
this deficiency should one day be addressed, it should be done without complicating the
interface for invoking the default behavior. Meanwhile, in practice the default behavior
seems to work very well in practice—as it must if plumbing is to be successful—so the
lack of overrides is not keenly felt.

-13 -

Comparison with Other Systems

The ideas of the plumbing system grew from an attempt to generalize the way Acme
acquires files and data. Systems further from that lineage also share some properties
with plumbing. Most, however, require explicit linking or message passing rather than
plumbing’s implicit, context-based pattern matching, and none has the plumber’s
design of a language-based file server.

Reiss’s FIELD system [Reis95] probably comes the closest to providing the facilities of
the plumber. It has a central message-passing mechanism that connects applications
together through a combination of a library and a pattern-matching central message
dispatcher that handles message send and reply. The main differences between FIELD’s
message dispatcher and the plumber are first that the plumber is based on a special-
purpose language while the FIELD system uses an object-oriented library, second that
the plumber has no concept of a reply to a message, and finally that the FIELD system
has no concept of port. But the key distinction is probably in the level of use. In FIELD,
the message dispatcher is a critical integrating force of the underlying programming
environment, handling everything from debugging events to changing the working
directory of a program. Plumbing, by contrast, is intended primarily for integrating the
user interface of existing tools; it is more modest and very much simpler. The central
advantage of the plumber is its convenience and dynamism; the FIELD system does not
share the ease with which message dispatch rules can be added or modified.

The inspiration for Acme was the user interface to the object-oriented Oberon system
[WiGu92]. Oberon’s user interface interprets mouse clicks on strings such as
Obj.meth to invoke calls to the method meth of the object Obj. This was the start-
ing point for Acme’s middle-button execution [Pike94], but nothing in Oberon is much
like Acme’s right-button ‘acquisition’, which was the starting point for the plumber.
Oberon’s implicit method-based linking is not nearly as general as the pattern-matched
linking of the plumber, nor does its style of user-triggered method call correspond well
to the more general idea of inter-application communication of plumbing messages.

Microsoft’s OLE interface is another relative. It allows one application to embed its own
data within another’s, for example to place an Excel spreadsheet within a Frame docu-
ment; when Frame needs to format the page, it will start Excel itself, or at least some of
its DLLs, to format the spreadsheet. OLE data can only be understood by the application
that created it; plumbing messages, by contrast, contain arbitrary data with a rigidly for-
matted header that will be interpreted by the pattern matcher and the destination appli-
cation. The plumber’s simplified message format may limit its flexibility but makes
messages easy and efficient to dispatch and to interpret. At least for the cut-and-paste
style of exchange OLE encourages, plumbing gives up some power in return for simplic-
ity, while avoiding the need to invoke a vestigial program (if Excel can be called a ves-
tige) every time the pasted data is examined. Plumbing is also better suited to other
styles of data exchange, such as connecting compiler errors to the text editor.

The Hyperbole [Wein] package for Emacs adds hypertext facilities to existing docu-
ments. It includes explicit links and, like plumbing, a rule-driven way to form implicit
links. Since Emacs is purely textual, like Acme, Hyperbole does not easily extend to
driving graphical applications, nor does it provide a general interprocess communication
method. For instance, although Hyperbole provides some integration for mail applica-
tions, it cannot provide the glue that allows a click on a face icon in an external program
to open a mail message within the viewer. Moreover, since it is not implemented as a
file server, Hyperbole does not share the advantages of that architecture.

Henry’s erroxr program in 4BSD echoes a small but common use of plumbing. It takes
the error messages produced by a compiler and drives a text editor through the steps of
looking at each one in turn; the notion is to quicken the compile/edit/debug cycle. Sim-
ilar results are achieved in EMACS by writing special M-LISP macros to parse the error
messages from various compilers. Although for this particular purpose they may be

-14 -

more convenient than plumbing, these are specific solutions to a specific problem and
lack plumbing’s generality.

Of course, the resource forks in MacOS and the association rules for file name exten-
sions in Windows also provide some of the functionality of the plumber, although again
without the generality or dynamic nature.

Closer to home, Ousterhout’s Tcl (Tool Command Language) [Oust90] was originally
designed to embed a little command interpreter in each application to control interpro-
cess communication and provide a level of integration. Plumbing, on the other hand,
provides minimal support within the application, offloading most of the message han-
dling and all the command execution to the central plumber.

The most obvious relative to plumbing is perhaps the hypertext links of a web browser.
Plumbing differs by synthesizing the links on demand. Rather than constructing links
within a document as in HTML, plumbing uses the context of a button click to derive
what it should link to. That the rules for this decision can be modified dynamically gives
it a more fluid feel than a standard web browsing world. One possibility for future work
is to adapt a web browser to use plumbing as its link-following engine, much as Acme
used plumbing to offload its acquisition rules. This would connect the web browser to
the existing tools, rather than the current trend in most systems of replacing the tools
by a browser.

Each of these prior systems—and there are others, e.g. [Pasa93, Free93]—addresses a
particular need or subset of the issues of system integration. Plumbing differs because
its particular choices were different. It focuses on two key issues: centralizing and
automating the handling of interprocess communication among interactive programs,
and maximizing the convenience (or minimizing the trouble) for the human user of its
services. Moreover, the plumber’'s implementation as a file server, with messages
passed over files it controls, permits the architecture to work transparently across a net-
work. None of the other systems discussed here integrates distributed systems as
smoothly as local ones without the addition of significant extra technology.

Discussion

There were a few surprises during the development of plumbing. The first version of
plumbing was done for the Inferno system [Dorw97a,Dorw97b], using its file-to-
channel mechanism to mediate the IPC. Although it was very simple to build, it encoun-
tered difficulties because the plumber was too disconnected from its clients; in particu-
lar, there was no way to discover whether a port was in use. When plumbing was imple-
mented afresh for Plan 9, it was provided through a true file server. Although this was
much more work, it paid off handsomely. The plumber now knows whether a port is
open, which makes it easy to decide whether a new program must be started to handle a
message, and the ability to edit the rules file dynamically is a major advantage. Other
advantages arise from the file-server design, such as the ease of exporting plumbing
ports across the network to remote machines and the implicit security model a file-
based interface provides: no one has permission to open my private plumbing files.

On the other hand, Inferno was an all-new environment and the user interface for
plumbing was able to be made uniform for all applications. This was impractical for
Plan 9, so more ad hoc interfaces had to be provided for that environment. Yet even in
Plan 9 the advantages of efficient, convenient, dynamic interprocess communication out-
weigh the variability of the user interface. In fact, it is perhaps a telling point that the
system works well for a variety of interfaces; the provision of a central, convenient
message-passing service is a good idea regardless of how the programs use it.

Plumbing’s rule language uses only regular expressions and a few special rules such as
isfile for matching text. There is much more that could be done. For example, in
the current system a JPEG file can be recognized by a .jpg suffix but not by its

-15 -

contents, since the plumbing language has no facility for examining the contents of files
named in its messages. To address this issue without adding more special rules
requires rethinking the language itself. Although the current system seems a good bal-
ance of complexity and functionality, perhaps a richer, more general-purpose language
would permit more exotic applications of the plumbing model.

In conclusion, plumbing adds an effective, easy-to-use inter-application communication
mechanism to the Plan 9 user interface. Its unusual design as a language-driven file
server makes it easy to add context-dependent, dynamically interpreted, general-
purpose hyperlinks to the desktop, for both existing tools and new ones.

Acknowledgements

Dave Presotto wrote the mail file system and edmail. He, Russ Cox, Sape Mullender,
and Cliff Young influenced the design, offered useful suggestions, and suffered early
versions of the software. They also made helpful comments on this paper, as did Den-
nis Ritchie and Brian Kernighan.

References

[Dorw97a] Sean Dorward, Rob Pike, David Leo Presotto, Dennis M. Ritchie, Howard W.
Trickey, and Philip Winterbottom, ‘‘Inferno”’, Proceedings of the IEEE Compcon 97
Conference, San Jose, 1997, pp. 241-244.

[Dorw97b] Sean Dorward, Rob Pike, David Leo Presotto, Dennis M. Ritchie, Howard W.
Trickey, and Philip Winterbottom, “The Inferno Operating System’’, Bell Labs Technical
Journal, 2, 1, Winter, 1997.

[Free93] FreeBSD, Syslog configuration file manual syslog.conf(0).

[Kill84] T. J. Killian, ““Processes as Files”’, Proceedings of the Summer 1984 USENIX
Conference, Salt Lake City, 1984, pp. 203-207.

[Oust90] John K. Qusterhout, ‘““Tcl: An Embeddable Command Languages’’, Proceedings
of the Winter 1990 USENIX Conference, Washington, 1990, pp. 133-146.

[Pasa93] Vern Paxson and Chris Saltmarsh, "Glish: A User-Level Software Bus for
Loosely-Coupled Distributed Systems" , Proceedings of the Winter 1993 USENIX
Conference, San Diego, 1993, pp. 141-155.

[Pike87a] Rob Pike, ‘‘Structural Regular Expressions’, EUUG Spring 1987 Conference
Proceedings, Helsinki, May 1987, pp. 21-28.

[Pike87b] Rob Pike, ““The Text Editor sam’’, Software — Practice and Experience, 17, 5,
Nov. 1987, pp. 813-845.

[Pike91] Rob Pike, ““8)2, the Plan 9 Window System’’, Proceedings of the Summer 1991
USENIX Conference, Nashville, 1991, pp. 257-265.

[Pike93] Rob Pike, Dave Presotto, Ken Thompson, Howard Trickey, and Phil Winterbot-
tom, “The Use of Name Spaces in Plan 9”’, Operating Systems Review, 27, 2, April 1993,
pp. 72-76.

[Pike94] Rob Pike, ‘“Acme: A User Interface for Programmers’’, Proceedings of the Winter
1994 USENIX Conference, San Francisco, 1994, pp. 223-234.

[PiPr85] Rob Pike and Dave Presotto, ‘‘Face the Nation’’, Proceedings of the USENIX
Summer 1985 Conference, Portland, 1985, pg. 81.

[Reis95] Steven P. Reiss, The FIELD Programming Environment: A Friendly Integrated
Environment for Learning and Development, Kluwer, Boston, 1995.

[Wein] Bob Weiner, Hyperbole User Manual,
http://www.cs.indiana.edu/elisp/hyperbole/hyperbole_1.html

[Wint94] Philip Winterbottom, ‘““ACID: A Debugger based on a Language’’, Proceedings of

-16 -

the USENIX Winter Conference, San Francisco, CA, 1994.

[WiGu92] Niklaus Wirth and Jurg Gutknecht, Project Oberon: The Design of an Operating
System and Compilers, Addison-Wesley, Reading, 1992.

