The Use of Name Spaces in Plan 9

Rob Pike
Dave Presotto
Ken Thompson

Howavrd Trickey
Phil Winterbottom

Bell Laboratories
Murray Hill, New Jersey 07974
USA

ABSTRACT

Plan 9 is a distributed system built at the Computing Sciences
Research Center of AT&T Bell Laboratories (now Lucent Technologies, Bell
Labs) over the last few years. Its goal is to provide a production-quality
system for software development and general computation using hetero-
geneous hardware and minimal software. A Plan 9 system comprises CPU
and file servers in a central location connected together by fast networks.
Slower networks fan out to workstation-class machines that serve as user
terminals. Plan 9 argues that given a few carefully implemented abstrac-
tions it is possible to produce a small operating system that provides
support for the largest systems on a variety of architectures and net-
works. The foundations of the system are built on two ideas: a per-
process name space and a simple message-oriented file system protocol.

The operating system for the CPU servers and terminals is structured as a tradi-
tional kernel: a single compiled image containing code for resource management, pro-
cess control, user processes, virtual memory, and I/O. Because the file server is a sepa-
rate machine, the file system is not compiled in, although the management of the name
space, a per-process attribute, is. The entire kernel for the multiprocessor SGI Power
Series machine is 25000 lines of C, the largest part of which is code for four networks
including the Ethernet with the Internet protocol suite. Fewer than 1500 lines are
machine-specific, and a functional kernel with minimal 1/O can be put together from
source files totaling 6000 lines. [Pike90]

The system is relatively small for several reasons. First, it is all new: it has not had
time to accrete as many fixes and features as other systems. Also, other than the net-
work protocol, it adheres to no external interface; in particular, it is not Unix-
compatible. Economy stems from careful selection of services and interfaces. Finally,
wherever possible the system is built around two simple ideas: every resource in the
system, either local or remote, is represented by a hierarchical file system; and a user or
process assembles a private view of the system by constructing a file name space that
connects these resources. [Needham]

Appeared in Operating Systems Review, Vol. 27, #2, April 1993, pp. 72-76 (reprinted from
Proceedings of the 5th ACM SIGOPS European Workshop, Mont Saint-Michel, 1992, Paper n° 34).



File Protocol

All resources in Plan 9 look like file systems. That does not mean that they are
repositories for permanent files on disk, but that the interface to them is file-oriented:
finding files (resources) in a hierarchical name tree, attaching to them by name, and
accessing their contents by read and write calls. There are dozens of file system types
in Plan 9, but only a few represent traditional files. At this level of abstraction, files in
Plan 9 are similar to objects, except that files are already provided with naming, access,
and protection methods that must be created afresh for objects. Object-oriented read-
ers may approach the rest of this paper as a study in how to make objects look like files.

The interface to file systems is defined by a protocol, called 9P, analogous but not
very similar to the NFS protocol. The protocol talks about files, not blocks; given a con-
nection to the root directory of a file server, the 9P messages navigate the file hierarchy,
open files for 1/0, and read or write arbitrary bytes in the files. 9P contains 17 message
types: three for initializing and authenticating a connection and fourteen for manipulat-
ing objects. The messages are generated by the kernel in response to user- or kernel-
level 1/O requests. Here is a quick tour of the major message types. The auth and
attach messages authenticate a connection, established by means outside 9P, and val-
idate its user. The result is an authenticated channel that points to the root of the
server. The clone message makes a new channel identical to an existing channel,
which may be moved to a file on the server using a walk message to descend each
level in the hierarchy. The stat and wstat messages read and write the attributes of
the file pointed to by a channel. The open message prepares a channel for subsequent
read and write messages to access the contents of the file, while create and
remove perform, on the files, the actions implied by their names. The clunk mes-
sage discards a channel without affecting the file. None of the 9P messages consider
caching; file caches are provided, when needed, either within the server (centralized
caching) or by implementing the cache as a transparent file system between the client
and the 9P connection to the server (client caching).

For efficiency, the connection to local kernel-resident file systems, misleadingly
called devices, is by regular rather than remote procedure calls. The procedures map
one-to-one with 9P message types. Locally each channel has an associated data struc-
ture that holds a type field used to index a table of procedure calls, one set per file sys-
tem type, analogous to selecting the method set for an object. One kernel-resident file
system, the mount device, translates the local 9P procedure calls into RPC messages to
remote services over a separately provided transport protocol such as TCP or IL, a new
reliable datagram protocol, or over a pipe to a user process. Write and read calls
transmit the messages over the transport layer. The mount device is the sole bridge
between the procedural interface seen by user programs and remote and user-level
services. It does all associated marshaling, buffer management, and multiplexing and is
the only integral RPC mechanism in Plan 9. The mount device is in effect a proxy object.
There is no RPC stub compiler; instead the mount driver and all servers just share a
library that packs and unpacks 9P messages.

Examples

One file system type serves permanent files from the main file server, a stand-
alone multiprocessor system with a 350-gigabyte optical WORM jukebox that holds the
data, fronted by a two-level block cache comprising 7 gigabytes of magnetic disk and
128 megabytes of RAM. Clients connect to the file server using any of a variety of net-
works and protocols and access files using 9P. The file server runs a distinct operating
system and has no support for user processes; other than a restricted set of commands
available on the console, all it does is answer 9P messages from clients.



-3-

Once a day, at 5:00 AM, the file server sweeps through the cache blocks and marks
dirty blocks copy-on-write. It creates a copy of the root directory and labels it with the
current date, for example 1995/0314. It then starts a background process to copy the
dirty blocks to the WORM. The result is that the server retains an image of the file sys-
tem as it was early each morning. The set of old root directories is accessible using 9P,
so a client may examine backup files using ordinary commands. Several advantages
stem from having the backup service implemented as a plain file system. Most obvi-
ously, ordinary commands can access them. For example, to see when a bug was fixed

grep ’'mouse bug fix’ 1995/%*/sys/src/cmd/8%/file.c

The owner, access times, permissions, and other properties of the files are also backed
up. Because it is a file system, the backup still has protections; it is not possible to sub-
vert security by looking at the backup.

The file server is only one type of file system. A number of unusual services are
provided within the kernel as local file systems. These services are not limited to I/O
devices such as disks. They include network devices and their associated protocols, the
bitmap display and mouse, a representation of processes similar to /proc [Killian], the
name/value pairs that form the ‘environment’ passed to a new process, profiling ser-
vices, and other resources. Each of these is represented as a file system — directories
containing sets of files — but the constituent files do not represent permanent storage
on disk. Instead, they are closer in properties to UNIX device files.

For example, the console device contains the file /dev/cons, similar to the UNIX
file /dev/console: when written, /dev/cons appends to the console typescript;
when read, it returns characters typed on the keyboard. Other files in the console
device include /dev/time, the number of seconds since the epoch, /dev/cputime,
the computation time used by the process reading the device, /dev/pid, the process
id of the process reading the device, and /dev/user, the login name of the user
accessing the device. All these files contain text, not binary numbers, so their use is
free of byte-order problems. Their contents are synthesized on demand when read;
when written, they cause modifications to kernel data structures.

The process device contains one directory per live local process, named by its
numeric process id: /proc/1, /proc/2, etc. Each directory contains a set of files
that access the process. For example, in each directory the file mem is an image of the
virtual memory of the process that may be read or written for debugging. The text file
is a sort of link to the file from which the process was executed; it may be opened to
read the symbol tables for the process. The ctl file may be written textual messages
such as stop or kill to control the execution of the process. The status file con-
tains a fixed-format line of text containing information about the process: its name,
owner, state, and so on. Text strings written to the note file are delivered to the pro-
cess as notes, analogous to UNIX signals. By providing these services as textual I/O on
files rather than as system calls (such as kill) or special-purpose operations (such as
ptrace), the Plan 9 process device simplifies the implementation of debuggers and
related programs. For example, the command

cat /proc/*/status

is a crude form of the ps command; the actual ps merely reformats the data so
obtained.

The bitmap device contains three files, /dev/mouse, /dev/screen, and
/dev/bitblt, that provide an interface to the local bitmap display (if any) and point-
ing device. The mouse file returns a fixed-format record containing 1 byte of button
state and 4 bytes each of x and y position of the mouse. If the mouse has not moved
since the file was last read, a subsequent read will block. The screen file contains a
memory image of the contents of the display; the bitblt file provides a procedural



-4 -

interface. Calls to the graphics library are translated into messages that are written to
the bitblt file to perform bitmap graphics operations. (This is essentially a nested
RPC protocol.)

The various services being used by a process are gathered together into the
process’s name space, a single rooted hierarchy of file names. When a process forks,
the child process shares the name space with the parent. Several system calls
manipulate name spaces. Given a file descriptor £d that holds an open communications
channel to a service, the call

mount(int fd, char *old, int flags)

authenticates the user and attaches the file tree of the service to the directory named by
old. The flags specify how the tree is to be attached to old: replacing the current
contents or appearing before or after the current contents of the directory. A directory
with several services mounted is called a union directory and is searched in the specified
order. The call

bind(char *new, char *old, int flags)

takes the portion of the existing name space visible at new, either a file or a directory,
and makes it also visible at o1d. For example,

bind("1995/0301/sys/include", "/sys/include", REPLACE)

causes the directory of include files to be overlaid with its contents from the dump on
March first.

A process is created by the rfork system call, which takes as argument a bit vec-
tor defining which attributes of the process are to be shared between parent and child
instead of copied. One of the attributes is the name space: when shared, changes made
by either process are visible in the other; when copied, changes are independent.

Although there is no global name space, for a process to function sensibly the local
name spaces must adhere to global conventions. Nonetheless, the use of local name
spaces is critical to the system. Both these ideas are illustrated by the use of the name
space to handle heterogeneity. The binaries for a given architecture are contained in a
directory named by the architecture, for example /mips/bin; in use, that directory is
bound to the conventional location /bin. Programs such as shell scripts need not
know the CPU type they are executing on to find binaries to run. A directory of private
binaries is usually unioned with /bin. (Compare this to the ad hoc and special-
purpose idea of the PATH variable, which is not used in the Plan 9 shell.) Local
bindings are also helpful for debugging, for example by binding an old library to the
standard place and linking a program to see if recent changes to the library are
responsible for a bug in the program.

The window system, 8% [Pike91], is a server for files such as /dev/cons and
/dev/bitblt. Each client sees a distinct copy of these files in its local name space:
there are many instances of /dev/cons, each served by 8% to the local name space of
a window. Again, 8% implements services using local name spaces plus the use of I/0O
to conventionally named files. Each client just connects its standard input, output, and
error files to /dev/cons, with analogous operations to access bitmap graphics. Com-
pare this to the implementation of /dev/tty on UNIX, which is done by special code
in the kernel that overloads the file, when opened, with the standard input or output of
the process. Special arrangement must be made by a UNIX window system for
/dev/tty to behave as expected; 8% instead uses the provision of the corresponding
file as its central idea, which to succeed depends critically on local name spaces.

The environment 8% provides its clients is exactly the environment under which it
is implemented: a conventional set of files in /dev. This permits the window system to
be run recursively in one of its own windows, which is handy for debugging. It also



-5-

means that if the files are exported to another machine, as described below, the window
system or client applications may be run transparently on remote machines, even ones
without graphics hardware. This mechanism is used for Plan 9’s implementation of the
X window system: X is run as a client of 8%, often on a remote machine with lots of
memory. In this configuration, using Ethernet to connect MIPS machines, we measure
only a 10% degradation in graphics performance relative to running X on a bare Plan 9
machine.

An unusual application of these ideas is a statistics—gathering file system imple-
mented by a command called iostats. The command encapsulates a process in a
local name space, monitoring 9P requests from the process to the outside world — the
name space in which iostats is itself running. When the command completes,
iostats reports usage and performance figures for file activity. For example

iostats 8%

can be used to discover how much I/O the window system does to the bitmap device,
font files, and so on.

The import command connects a piece of name space from a remote system to
the local name space. Its implementation is to dial the remote machine and start a pro-
cess there that serves the remote name space using 9P. It then calls mount to attach
the connection to the name space and finally dies; the remote process continues to
serve the files. One use is to access devices not available locally. For example, to write
a floppy one may say

import lab.pc /a: /n/dos
cp foo /n/dos/bar

The call to import connects the file tree from /a: on the machine 1ab.pc (which
must support 9P) to the local directory /n/dos. Then the file foo can be written to
the floppy just by copying it across.

Another application is remote debugging:
import helix /proc

makes the process file system on machine helix available locally; commands such as
ps then see helix’s processes instead of the local ones. The debugger may then look
at a remote process:

db /proc/27/text /proc/27/mem

allows breakpoint debugging of the remote process. Since db infers the CPU type of the
process from the executable header on the text file, it supports cross-architecture
debugging, too. Care is taken within db to handle issues of byte order and floating
point; it is possible to breakpoint debug a big-endian MIPS process from a little-endian
i386.

Network interfaces are also implemented as file systems [Presotto]. For example,
/net/tcp is a directory somewhat like /proc: it contains a set of numbered directo-
ries, one per connection, each of which contains files to control and communicate on
the connection. A process allocates a new connection by accessing
/net/tcp/clone, which evaluates to the directory of an unused connection. To
make a «call, the process writes a textual message such as ’connect
135.104.53.2!512’ to the ctl file and then reads and writes the data file. An
rlogin service can be implemented in a few of lines of shell code.

This structure makes network gatewaying easy to provide. We have machines with
Datakit interfaces but no Internet interface. On such a machine one may type



import helix /net
telnet tcpl!ai.mit.edu

The import uses Datakit to pull in the TCP interface from helix, which can then be
used directly; the tcp! notation is necessary because we routinely use multiple net-
works and protocols on Plan 9—it identifies the network in which ai.mit.edu is a
valid name.

In practice we do not use rlogin or telnet between Plan 9 machines. Instead
a command called cpu in effect replaces the CPU in a window with that on another
machine, typically a fast multiprocessor CPU server. The implementation is to recreate
the name space on the remote machine, using the equivalent of import to connect
pieces of the terminal’s name space to that of the process (shell) on the CPU server,
making the terminal a file server for the CPU. CPU-local devices such as fast file system
connections are still local; only terminal-resident devices are imported. The result is
unlike UNIX rlogin, which moves into a distinct name space on the remote machine,
or file sharing with NFS, which keeps the name space the same but forces processes to
execute locally. Bindings in /bin may change because of a change in CPU architecture,
and the networks involved may be different because of differing hardware, but the effect
feels like simply speeding up the processor in the current name space.

Position

These examples illustrate how the ideas of representing resources as file systems
and per-process name spaces can be used to solve problems often left to more exotic
mechanisms. Nonetheless there are some operations in Plan 9 that are not mapped into
file /0. An example is process creation. We could imagine a message to a control file
in /proc that creates a process, but the details of constructing the environment of the
new process — its open files, name space, memory image, etc. — are too intricate to be
described easily in a simple I/O operation. Therefore new processes on Plan 9 are cre-
ated by fairly conventional rfork and exec system calls; /proc is used only to repre-
sent and control existing processes.

Plan 9 does not attempt to map network name spaces into the file system name
space, for several reasons. The different addressing rules for various networks and pro-
tocols cannot be mapped uniformly into a hierarchical file name space. Even if they
could be, the various mechanisms to authenticate, select a service, and control the con-
nection would not map consistently into operations on a file.

Shared memory is another resource not adequately represented by a file name
space. Plan 9 takes care to provide mechanisms to allow groups of local processes to
share and map memory. Memory is controlled by system calls rather than special files,
however, since a representation in the file system would imply that memory could be
imported from remote machines.

Despite these limitations, file systems and name spaces offer an effective model
around which to build a distributed system. Used well, they can provide a uniform,
familiar, transparent interface to a diverse set of distributed resources. They carry
well-understood properties of access, protection, and naming. The integration of
devices into the hierarchical file system was the best idea in UNIX. Plan 9 pushes the
concepts much further and shows that file systems, when used inventively, have plenty
of scope for productive research.

References

[Killian] T. Killian, ““Processes as Files’’, USENIX Summer Conf. Proc., Salt Lake City, 1984
[Needham] R. Needham, ‘“Names’’, in Distributed systems, S. Mullender, ed., Addison
Wesley, 1989

[Pike90] R. Pike, D. Presotto, K. Thompson, H. Trickey, ‘““‘Plan 9 from Bell Labs’, UKUUG



Proc. of the Summer 1990 Conf., London, England, 1990

[Presotto] D. Presotto, ‘“Multiprocessor Streams for Plan 9”’, UKUUG Proc. of the Summer
1990 Conf., London, England, 1990

[Pike91] Pike, R., ‘*8.5, The Plan 9 Window System’’, USENIX Summer Conf. Proc.,
Nashville, 1991



