Adding Application Support for a New Architecture in
Plan 9

Bob Flandrena
bobf@plan9.bell-labs.com

Introduction

Plan 9 has five classes of architecture-dependent software: headers, kernels, compilers
and loaders, the 1ibc system library, and a few application programs. In general,
architecture-dependent programs consist of a portable part shared by all architectures
and a processor-specific portion for each supported architecture. The portable code is
often compiled and stored in a library associated with each architecture. A program is
built by compiling the architecture-specific code and loading it with the library. Support
for a new architecture is provided by building a compiler for the architecture, using it to
compile the portable code into libraries, writing the architecture-specific code, and then
loading that code with the libraries.

This document describes the organization of the architecture-dependent code and
headers on Plan 9. The first section briefly discusses the layout of the headers and the
source code for the kernels, compilers, loaders, and the system library, 1ibc. The sec-
ond section provides a detailed discussion of the structure of 1ibmach, a library con-
taining almost all architecture-dependent code used by application programs. The final
section describes the steps required to add application program support for a new archi-
tecture.

Directory Structure

Architecture-dependent information for the new processor is stored in the direc-
tory tree rooted at /m where m is the name of the new architecture (e.g., mips). The
new directory should be initialized with several important subdirectories, notably bin,
include, and 1ib. The directory tree of an existing architecture serves as a good
model for the new tree. The architecture-dependent mkfile must be stored in the
newly created root directory for the architecture. It is easiest to copy the mkfile for an
existing architecture and modify it for the new architecture. When the mkfile is correct,
change the OS and CPUS variables in the /sys/src/mkfile.proto to reflect the
addition of the new architecture.

Headers

Architecture-dependent headers are stored in directory /m/include where m is the
name of the architecture (e.g., mips). Two header files are required: u.h and
ureg.h. The first defines fundamental data types, bit settings for the floating point
status and control registers, and va_list processing which depends on the stack
model for the architecture. This file is best built by copying and modifying the u.h file
from an architecture with a similar stack model. The ureg.h file contains a structure
describing the layout of the saved register set for the architecture; it is defined by the
kernel.

Header file /sys/include/a.out.h contains the definitions of the magic numbers
used to identify executables for each architecture. When support for a new architecture



-2

is added, the magic number for the architecture must be added to this file.

The header format of a bootable executable is defined by each manufacturer. Header
file /sys/include/bootexec.h contains structures describing the headers cur-
rently supported. If the new architecture uses a common header such as COFF, the
header format is probably already defined, but if the bootable header format is non-
standard, a structure defining the format must be added to this file.

Kernel

Although the kernel depends critically on the properties of the underlying hardware,
most of the higher-level kernel functions, including process management, paging,
pseudo-devices, and some networking code, are independent of processor architecture.
The portable kernel code is divided into two parts: that implementing kernel functions
and that devoted to the boot process. Code in the first class is stored in directory
/sys/src/9/port and the portable boot code is stored in /sys/src/9/boot.
Architecture-dependent kernel code is stored in the subdirectories of /sys/src/9
named for each architecture.

The relationship between the kernel code and the boot code is convoluted and subtle.
The portable boot code is compiled into a library for each architecture. An
architecture-specific main program is loaded with the appropriate library and the result-
ing executable is compiled into the kernel where it is executed as a user process during
the final stages of kernel initialization. The boot process performs authentication,
attaches the name space root to the appropriate file system and starts the init pro-
cess.

The organization of the portable kernel source code differs from that of most other
architecture-specific code. Instead of storing the portable code in a library and loading
it with the architecture-specific code, the portable code is compiled directly into the
directory containing the architecture-specific code and linked with the object files built
from the source in that directory.

Compilers and Loaders

The compiler source code conforms to the usual organization: portable code is compiled
into a library for each architecture and the architecture-dependent code is loaded with
that library. The common compiler code is stored in /sys/src/cmd/cc. The
mkfile in this directory compiles the portable source and archives the objects in a
library for each architecture. The architecture-specific compiler source is stored in a
subdirectory of /sys/src/cmd with the same name as the compiler (e.g.,
/sys/src/cmd/vc).

There is no portable code shared by the loaders. Each directory of loader source code is
self-contained, except for a header file and an instruction name table included from the
directory of the associated compiler.

Libraries

Most C library modules are portable; the source code is stored in directories
/sys/src/libc/port and /sys/src/libc/9sys. Architecture-dependent
library code is stored in the subdirectory of /sys/src/1libc named the same as the
target processor. Non-portable functions not only implement architecture-dependent
operations but also supply assembly language implementations of functions where
speed is critical. Directory /sys/src/1libc/9syscall is unusual because it con-
tains architecture-dependent information for all architectures. It holds only a header
file defining the names and numbers of system calls and amkfile. The mkfile exe-
cutes an rc script that parses the header file, constructs assembler language functions



-3-

implementing the system call for each architecture, assembles the code, and archives
the object files in 1ibc. The assembler language syntax and the system interface differ
for each architecture. The rc script in this mkfile must be modified to support a new
architecture.

Applications

Application programs process two forms of architecture-dependent information: exe-
cutable images and intermediate object files. Almost all processing is on executable
files. System library 1ibmach provides functions that convert architecture-specific
data to a portable format so application programs can process this data independent of
its underlying representation. Further, when a new architecture is implemented almost
all code changes are confined to the library; most affected application programs need
only be reloaded. The source code for the library is stored in /sys/src/libmach.

An application program running on one type of processor must be able to interpret
architecture-dependent information for all supported processors. For example, a
debugger must be able to debug the executables of all architectures, not just the archi-
tecture on which it is executing, since /proc may be imported from a different
machine.

A small part of the application library provides functions to extract symbol references
from object files. The remainder provides the following processing of executable files
or memory images:

o Header interpretation.
. Symbol table interpretation.

. Execution context interpretation, such as stack traces and stack frame loca-
tion.

. Instruction interpretation including disassembly and instruction size and
follow-set calculations.

o Exception and floating point number interpretation.
. Architecture-independent read and write access through a relocation map.

Header file /sys/include/mach.h defines the interfaces to the application library.
Manual pages mach(2), symbol(2), and object(2) describe the details of the library func-
tions.

Two data structures, called Mach and Machdata, contain architecture-dependent
parameters and a jump table of functions. Global variables mach and machdata point
to the Mach and Machdata data structures associated with the target architecture. An
application determines the target architecture of a file or executable image, sets the glo-
bal pointers to the data structures associated with that architecture, and subsequently
performs all references indirectly through the pointers. As a result, direct references to
the tables for each architecture are avoided and the application code intrinsically sup-
ports all architectures (though only one at a time).

Object file processing is handled similarly: architecture-dependent functions identify
and decode the intermediate files for the processor. The application indirectly invokes a
classification function to identify the architecture of the object code and to select the
appropriate decoding function. Subsequent calls then use that function to decode each
record. Again, the layer of indirection allows the application code to support all archi-
tectures without modification.

Splitting the architecture-dependent information between the Mach and Machdata
data structures allows applications to choose an appropriate level of service. Even
though an application does not directly reference the architecture-specific data struc-
tures, it must load the architecture-dependent tables and code for all architectures it



-4 -

supports. The size of this data can be substantial and many applications do not require
the full range of architecture-dependent functionality. For example, the size com-
mand does not require the disassemblers for every architecture; it only needs to decode
the header. The Mach data structure contains a few architecture-specific parameters
and a description of the processor register set. The size of the structure varies with the
size of the register set but is generally small. The Machdata data structure contains a
jump table of architecture-dependent functions; the amount of code and data refer-
enced by this table is usually large.

Libmach Source Code Organization
The 1ibmach library provides four classes of functionality:

Header and Symbol Table Decoding - Files executable.c and sym.c contain code
to interpret the header and symbol tables of an executable file or executing image.
Function crackhdr decodes the header, reformats the information into an Fhdr
data structure, and points global variable mach to the Mach data structure of the
target architecture. The symbol table processing uses the data in the Fhdr struc-
ture to decode the symbol table. A variety of symbol table access functions then
support queries on the reformatted table.

Debugger Support - Files named m. c, where m is the code letter assigned to the archi-
tecture, contain the initialized Mach data structure and the definition of the regis-
ter set for each architecture. Architecture-specific debugger support functions and
an initialized Machdata structure are stored in files named mdb.c. Files
machdata.c and setmach.c contain debugger support functions shared by
multiple architectures.

Architecture-Independent Access - Files map.c, access.c, and swap.c provide
accesses through a relocation map to data in an executable file or executing
image. Byte-swapping is performed as needed. Global variables mach and
machdata must point to the Mach and Machdata data structures of the target
architecture.

Object File Interpretation - These files contain functions to identify the target architec-
ture of an intermediate object file and extract references to symbols. File obj.c
contains code common to all architectures; file mobj.c contains the
architecture-specific source code for the machine with code character m.

The Machdata data structure is primarily a jump table of architecture-dependent
debugger support functions. Functions select the Machdata structure for a target
architecture based on the value of the type code in the Fhdxr structure or the name of
the architecture. The jump table provides functions to swap bytes, interpret machine
instructions, perform stack traces, find stack frames, format floating point numbers, and
decode machine exceptions. Some functions, such as machine exception decoding, are
idiosyncratic and must be supplied for each architecture. Others depend on the com-
piler run-time model and several architectures may share code common to a model. For
example, many architectures share the code to process the fixed-frame stack model
implemented by several of the compilers. Finally, some functions, such as byte-
swapping, provide a general capability and the jump table need only select an imple-
mentation appropriate to the architecture.

Adding Application Support for a New Architecture

This section describes the steps required to add application-level support for a new
architecture. We assume the kernel, compilers, loaders and system libraries for the new
architecture are already in place. This implies that a code-character has been assigned
and that the architecture-specific headers have been updated. With the exception of
two programs, application-level changes are confined to header files and the source



code in /sys/src/libmach.

1.

Begin by updating the application library header file in
/sys/include/mach.h. Add the following symbolic codes to the enum state-
ment near the beginning of the file:

. The processor type code, e.g., MSPARC.

. The type of the executable. There are usually two codes needed: one for a
bootable executable (i.e., a kernel) and one for an application executable.

. The disassembler type code. Add one entry for each supported disassembler
for the architecture.

e A symbolic code for the object file.

In a file name /sys/src/libmach/m.c (where m is the identifier character
assigned to the architecture), initialize Reglist and Mach data structures with
values defining the register set and various system parameters. The source file for
a similar architecture can serve as template. Most of the fields of the Mach data
structure are obvious but a few require further explanation.

kbase - This field contains the address of the kernel ublock. The debuggers
assume the first entry of the kernel ublock points to the Proc structure for
a kernel thread.

ktmask - This field is a bit mask used to calculate the kernel text address from
the kernel ublock address. The first page of the kernel text segment is cal-
culated by ANDing the negation of this mask with kbase.

kspoff - This field contains the byte offset in the Proc data structure to the
saved kernel stack pointer for a suspended kernel thread. This is the offset to
the sched. sp field of a Proc table entry.

kpcoff - This field contains the byte offset into the Proc data structure of the
program counter of a suspended kernel thread. This is the offset to field
sched. pc in that structure.

kspdelta and kpcdelta - These fields contain corrections to be added to the
stack pointer and program counter, respectively, to properly locate the stack
and next instruction of a kernel thread. These values bias the saved registers
retrieved from the Label structure named sched in the Proc data struc-
ture. Most architectures require no bias and these fields contain zeros.

scalloff - This field contains the byte offset of the scallnr field in the
ublock data structure associated with a process. The scallnr field con-
tains the number of the last system call executed by the process. The loca-
tion of the field varies depending on the size of the floating point register set
which precedes it in the ublock.

Add an entry to the initialization of the ExecTable data structure at the begin-
ning of file /sys/src/libmach/executable.c. Most architectures require
two entries: one for a normal executable and one for a bootable image. Each table
entry contains:

. Magic Number - The big-endian magic number assigned to the architecture
in /sys/include/a.out.h.

. Name - A string describing the executable.

. Executable type code - The executable code assigned in
/sys/include/mach.h.

. Mach pointer - The address of the initialized Mach data structure con-
structed in Step 2. You must also add the name of this table to the list of



-6 -

Mach table definitions immediately preceding the ExecTable initialization.

. Header size - The number of bytes in the executable file header. The size of
a normal executable header is always sizeof(Exec). The size of a boot-
able header is determined by the size of the structure for the architecture
defined in /sys/include/bootexec.h.

. Byte-swapping function - The address of beswal or leswal for big-
endian and little-endian architectures, respectively.

. Decoder function - The address of a function to decode the header. Function
adotout decodes the common header shared by all normal (i.e., non-
bootable) executable files. The header format of bootable executable files is
defined by the manufacturer and a custom function is almost always required
to decode it. Header file /sys/include/bootexec.h contains data
structures defining the bootable headers for all architectures. If the new
architecture uses an existing format, the appropriate decoding function
should already be in executable.c. If the header format is unique, then a
new function must be added to this file. Usually the decoding function for an
existing architecture can be adopted with minor modifications.

Write an object file parser and store it in file /sys/src/libmach/mobj.c
where m is the identifier character assigned to the architecture. Two functions are
required: a predicate to identify an object file for the architecture and a function to
extract symbol references from the object code. The object code format is obscure
but it is often possible to adopt the code of an existing architecture with minor
modifications. When these functions are in hand, insert their addresses in the
jump table at the beginning of file /sys/src/libmach/obj.c.

Implement the required debugger support functions and initialize the parameters
and jump table of the Machdata data structure for the architecture. This code is
conventionally stored in a file named /sys/src/libmach/mdb.c where mis
the identifier character assigned to the architecture. The fields of the Machdata
structure are:

bpinst and bpsize - These fields contain the breakpoint instruction and the
size of the instruction, respectively.

swab - This field contains the address of a function to byte-swap a 16-bit value.
Choose leswab or beswab for little—-endian or big-endian architectures,
respectively.

swal - This field contains the address of a function to byte-swap a 32-bit value.
Choose leswal or beswal for little—-endian or big-endian architectures,
respectively.

ctrace - This field contains the address of a function to perform a C-language
stack trace. Two general trace functions, risctrace and cisctrace, tra-
verse fixed-frame and relative-frame stacks, respectively. If the compiler for
the new architecture conforms to one of these models, select the appropriate
function. If the stack model is unique, supply a custom stack trace function.

findframe - This field contains the address of a function to locate the stack
frame associated with a text address. Generic functions riscframe and
ciscframe process fixed-frame and relative-frame stack models.

ufixup - This field contains the address of a function to adjust the base address
of the register save area. Currently, only the 68020 requires this bias to off-
set over the active exception frame.

excep - This field contains the address of a function to produce a text string
describing the current exception. Each architecture stores exception



-7 -

information uniquely, so this code must always be supplied.

bpfix - This field contains the address of a function to adjust an address prior to
laying down a breakpoint.

sftos - This field contains the address of a function to convert a single precision
floating point value to a string. Choose leieeesftos for little-endian or
beieeesftos for big-endian architectures.

dftos - This field contains the address of a function to convert a double preci-
sion floating point value to a string. Choose 1leieeedftos for little-endian
or beieeedftos for big-endian architectures.

foll, das, hexinst, and instsize - These fields point to functions that
interpret machine instructions. They rely on disassembly of the instruction
and are unique to each architecture. Foll calculates the follow set of an
instruction. Das disassembles a machine instruction to assembly language.
Hexinst formats a machine instruction as a text string of hexadecimal dig-
its. Instsize calculates the size in bytes, of an instruction. Once the dis-
assembler is written, the other functions can usually be implemented as trivial
extensions of it.

It is possible to provide support for a new architecture incrementally by filling the
jump table entries of the Machdata structure as code is written. In general, if a
jump table entry contains a zero, application programs requiring that function will
issue an error message instead of attempting to call the function. For example, the
foll, das, hexinst, and instsize jump table slots can be zeroed until a dis-
assembler is written. Other capabilities, such as stack trace or variable inspection,
can be supplied and will be available to the debuggers but attempts to use the dis-
assembler will result in an error message.

Update the table named machines near the beginning of
/sys/src/libmach/setmach.c. This table binds the file type code and
machine name to the Mach and Machdata structures of an architecture. The
names of the initialized Mach and Machdata structures built in steps 2 and 5
must be added to the list of structure definitions immediately preceding the table
initialization. If both Plan 9 and native disassembly are supported, add an entry for
each disassembler to the table. The entry for the default disassembler (usually
Plan 9) must be first.

Add an entry describing the architecture to the table named trans near the end
of /sys/src/cmd/prof.c.

Add an entry describing the architecture to the table named objtype near the
start of /sys/src/cmd/pcc.c.

Recompile and install all application programs that include header file mach.h
and load with 1ibmach. a.



