
Lexical File Names in Plan 9

or

Getting Dot-Dot Right

Rob Pike
rob@plan9.bell-labs.com

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

Symbolic links make the Unix file system non-hierarchical, resulting in
multiple valid path names for a given file. This ambiguity is a source of
confusion, especially since some shells work overtime to present a con­
sistent view from programs such as pwd, while other programs and the
kernel itself do nothing about the problem.

Plan 9 has no symbolic links but it does have other mechanisms that pro­
duce the same difficulty. Moreover, Plan 9 is founded on the ability to
control a program�s environment by manipulating its name space.
Ambiguous names muddle the result of operations such as copying a
name space across the network.

To address these problems, the Plan 9 kernel has been modified to main­
tain an accurate path name for every active file (open file, working direc­
tory, mount table entry) in the system. The definition of �accurate� is that
the path name for a file is guaranteed to be the rooted, absolute name
the program used to acquire it. These names are maintained by an effi­
cient method that combines lexical processing�such as evaluating .. by
just removing the last path name element of a directory�with local oper­
ations within the file system to maintain a consistently, easily understood
view of the name system. Ambiguous situations are resolved by examin­
ing the lexically maintained names themselves.

A new kernel call, fd2path, returns the file name associated with an
open file, permitting the use of reliable names to improve system ser­
vices ranging from pwd to debugging. Although this work was done in
Plan 9, Unix systems could also benefit from the addition of a method to
recover the accurate name of an open file or the current directory.

Motivation

Consider the following unedited transcript of a session running the Bourne shell on a
modern Unix system:

­ 2 ­

% echo $HΧME
/home/rob
% cd $HΧME
% pwd
/n/bopp/v7/rob
% cd /home/rob
% cd /home/ken
% cd ../rob
../rob: bad directory
%

(The same output results from running tcsh; we�ll discuss ksh in a moment.) To a
neophyte being schooled in the delights of a hierarchical file name space, this behavior
must be baffling. It is, of course, the consequence of a series of symbolic links intended
to give users the illusion they share a disk, when in fact their files are scattered over
several devices:

% ls -ld /home/rob /home/ken

lrwxr-xr-x 1 root sys 14 Dec 26 1998 /home/ken -> /n/bopp/v6/ken

lrwxr-xr-x 1 root sys 14 Dec 23 1998 /home/rob -> /n/bopp/v7/rob

%

The introduction of symbolic links has changed the Unix file system from a true hierar­
chy into a directed graph, rendering .. ambiguous and sowing confusion.

Unix popularized hierarchical naming, but the introduction of symbolic links made its
naming irregular. Worse, the pwd command, through the underlying getwd library
routine, uses a tricky, expensive algorithm that often delivers the wrong answer. Start­
ing from the current directory, getwd opens the parent, .., and searches it for an
entry whose i-number matches the current directory; the matching entry is the final
path element of the ultimate result. Applying this process iteratively, getwd works
back towards the root. Since getwd knows nothing about symbolic links, it will recover
surprising names for directories reached by them, as illustrated by the example; the
backward paths getwd traverses will not backtrack across the links.

Partly for efficiency and partly to make cd and pwd more predictable, the Korn shell
ksh [Korn94] implements pwd as a builtin. (The cd command must be a builtin in any
shell, since the current directory is unique to each process.) Ksh maintains its own pri­
vate view of the file system to try to disguise symbolic links; in particular, cd and pwd
involve some lexical processing (somewhat like the cleanname function discussed
later in this paper), augmented by heuristics such as examining the environment for
names like $HΧME and $PWD to assist initialization of the state of the private view.
[Korn00]

This transcript begins with a Bourne shell running:

% cd /home/rob
% pwd
/n/bopp/v7/rob
% ksh
$ pwd
/home/rob
$

This result is encouraging. Another example, again starting from a Bourne shell:

­ 3 ­

% cd /home/rob
% cd ../ken
../ken: bad directory
% ksh
$ pwd
/home/rob
$ cd ../ken
$ pwd
/home/ken
$

By doing extra work, the Korn shell is providing more sensible behavior, but it is easy to
defeat:

% cd /home/rob
% pwd
/n/bopp/v7/rob
% cd bin
% pwd
/n/bopp/v7/rob/bin
% ksh
$ pwd
/n/bopp/v7/rob/bin
$ exit
% cd /home/ken
% pwd
/n/bopp/v6/ken
% ksh
$ pwd
/n/bopp/v6/ken
$

In these examples, ksh�s built-in pwd failed to produce the results (/home/rob/bin
and /home/ken) that the previous example might have led us to expect. The Korn
shell is hiding the problem, not solving it, and in fact is not even hiding it very well.

A deeper question is whether the shell should even be trying to make pwd and cd do a
better job. If it does, then the getwd library call and every program that uses it will
behave differently from the shell, a situation that is sure to confuse. Moreover, the abil­
ity to change directory to ../ken with the Korn shell�s cd command but not with the
chdir system call is a symptom of a diseased system, not a healthy shell.

The operating system should provide names that work and make sense. Symbolic links,
though, are here to stay, so we need a way to provide sensible, unambiguous names in
the face of a non-hierarchical name space. This paper shows how the challenge was
met on Plan 9, an operating system with Unix-like naming.

Names in Plan 9

Except for some details involved with bootstrapping, file names in Plan 9 have the same
syntax as in Unix. Plan 9 has no symbolic links, but its name space construction opera­
tors, bind and mount, make it possible to build the same sort of non-hierarchical
structures created by symbolically linking directories on Unix.

Plan 9�s mount system call takes a file descriptor and attaches to the local name space
the file system service it represents:

mount(fd, "/dir", flags)

Here fd is a file descriptor to a communications port such as a pipe or network connec­
tion; at the other end of the port is a service, such as file server, that talks 9P, the Plan 9
file system protocol. After the call succeeds, the root directory of the service will be

­ 4 ­

visible at the mount point /dir, much as with the mount call of Unix. The flag argu­
ment specifies the nature of the attachment: MREPL says that the contents of the root
directory (appear to) replace the current contents of /dir; MAFTER says that the cur­
rent contents of dir remain visible, with the mounted directory�s contents appearing
after any existing files; and MBEFΧRE says that the contents remain visible, with the
mounted directory�s contents appearing before any existing files. These multicompo­
nent directories are called union directories and are somewhat different from union
directories in 4.4BSD-Lite [PeMc95], because only the top-level directory itself is
unioned, not its descendents, recursively. (Plan 9�s union directories are used differ­
ently from 4.4BSD-Lite�s, as will become apparent.)

For example, to bootstrap a diskless computer the system builds a local name space
containing only the root directory, /, then uses the network to open a connection to the
main file server. It then executes

mount(rootfd, "/", MREPL);

After this call, the entire file server�s tree is visible, starting from the root of the local
machine.

While mount connects a new service to the local name space, bind rearranges the
existing name space:

bind("tofile", "fromfile", flags)

causes subsequent mention of the fromfile (which may be a plain file or a directory)
to behave as though tofile had been mentioned instead, somewhat like a symbolic
link. (Note, however, that the arguments are in the opposite order compared to ln -s).
The flags argument is the same as with mount.

As an example, a sequence something like the following is done at bootstrap time to
assemble, under the single directory /bin, all of the binaries suitable for this architec­
ture, represented by (say) the string sparc:

bind("/sparc/bin", "/bin", MREPL);
bind("/usr/rob/sparc/bin", "/bin", MAFTER);

This sequence of binds causes /bin to contain first the standard binaries, then the
contents of rob�s private SPARC binaries. The ability to build such union directories
obviates the need for a shell $PATH variable while providing opportunities for manag­
ing heterogeneity. If the system were a Power PC, the same sequence would be run with
power textually substituted for sparc to place the Power PC binaries in /bin rather
than the SPARC binaries.

Trouble is already brewing. After these bindings are set up, where does

% cd /bin
% cd ..

set the current working directory, to / or /sparc or /usr/rob/sparc? We will
return to this issue.

There are some important differences between binds and symbolic links. First, sym­
bolic links are a static part of the file system, while Plan 9 bindings are created at run
time, are stored in the kernel, and endure only as long as the system maintains them;
they are temporary. Since they are known to the kernel but not the file system, they
must be set up each time the kernel boots or a user logs in; permanent bindings are cre­
ated by editing system initialization scripts and user profiles rather than by building
them in the file system itself.

The Plan 9 kernel records what bindings are active for a process, whereas symbolic
links, being held on the Unix file server, may strike whenever the process evaluates a
file name. Also, symbolic links apply to all processes that evaluate the affected file,

­ 5 ­

whereas bind has a local scope, applying only to the process that executes it and pos­
sibly some of its peers, as discussed in the next section. Symbolic links cannot con­
struct the sort of /bin directory built here; it is possible to have multiple directories
point to /bin but not the other way around.

Finally, symbolic links are symbolic, like macros: they evaluate the associated names
each time they are accessed. Bindings, on the other hand, are evaluated only once,
when the bind is executed; after the binding is set up, the kernel associates the underly­
ing files, rather than their names. In fact, the kernel�s representation of a bind is identi­
cal to its representation of a mount; in effect, a bind is a mount of the tofile upon
the fromfile. The binds and mounts coexist in a single mount table, the subject of
the next section.

The Mount Table

Unix has a single global mount table for all processes in the system, but Plan 9�s mount
tables are local to each process. By default it is inherited when a process forks, so
mounts and binds made by one process affect the other, but a process may instead
inherit a copy, so modifications it makes will be invisible to other processes. The con­
vention is that related processes, such as processes running in a single window, share a
mount table, while sets of processes in different windows have distinct mount tables. In
practice, the name spaces of the two windows will appear largely the same, but the pos­
sibility for different processes to see different files (hence services) under the same
name is fundamental to the system, affecting the design of key programs such as the
window system [Pike91].

The Plan 9 mount table is little more than an ordered list of pairs, mapping the
fromfiles to the tofiles. For mounts, the tofile will be an item called a
Channel, similar to a Unix vnode, pointing to the root of the file service, while for a
bind it will be the Channel pointing to the tofile mentioned in the bind call. In
both cases, the fromfile entry in the table will be a Channel pointing to the
fromfile itself.

The evaluation of a file name proceeds as follows. If the name begins with a slash, start
with the Channel for the root; otherwise start with the Channel for the current direc­
tory of the process. For each path element in the name, such as usr in /usr/rob, try
to �walk� the Channel to that element [Pike93]. If the walk succeeds, look to see if the
resulting Channel is the same as any fromfile in the mount table, and if so,
replace it by the corresponding tofile. Advance to the next element and continue.

There are a couple of nuances. If the directory being walked is a union directory, the
walk is attempted in the elements of the union, in order, until a walk succeeds. If none
succeed, the operation fails. Also, when the destination of a walk is a directory for a
purpose such as the chdir system call or the fromfile in a bind, once the final
walk of the sequence has completed the operation stops; the final check through the
mount table is not done. Among other things, this simplifies the management of union
directories; for example, subsequent bind calls will append to the union associated
with the underlying fromfile instead of what is bound upon it.

A Definition of Dot-Dot

The ability to construct union directories and other intricate naming structures intro­
duces some thorny problems: as with symbolic links, the name space is no longer hier­
archical, files and directories can have multiple names, and the meaning of .., the par­
ent directory, can be ambiguous.

The meaning of .. is straightforward if the directory is in a locally hierarchical part of
the name space, but if we ask what .. should identify when the current directory is a
mount point or union directory or multiply symlinked spot (which we will henceforth call

­ 6 ­

just a mount point, for brevity), there is no obvious answer. Name spaces have been
part of Plan 9 from the beginning, but the definition of .. has changed several times as
we grappled with this issue. In fact, several attempts to clarify the meaning of .. by
clever coding resulted in definitions that could charitably be summarized as �what the
implementation gives.�

Frustrated by this situation, and eager to have better-defined names for some of the
applications described later in this paper, we recently proposed the following definition
for ..:

The parent of a directory X, X/.., is the same directory that would obtain if we
instead accessed the directory named by stripping away the last path name ele­
ment of X.

For example, if we are in the directory /a/b/c and chdir to .., the result is exactly
as if we had executed a chdir to /a/b.

This definition is easy to understand and seems natural. It is, however, a purely lexical
definition that flatly ignores evaluated file names, mount tables, and other kernel-
resident data structures. Our challenge is to implement it efficiently. One obvious (and
correct) implementation is to rewrite path names lexically to fold out .., and then eval­
uate the file name forward from the root, but this is expensive and unappealing. We
want to be able to use local operations to evaluate file names, but maintain the global,
lexical definition of dot-dot. It isn�t too hard.

The Implementation

To operate lexically on file names, we associate a name with each open file in the ker­
nel, that is, with each Channel data structure. The first step is therefore to store a
char* with each Channel in the system, called its Cname, that records the absolute
rooted file name for the Channel. Cnames are stored as full text strings, shared
copy-on-write for efficiency. The task is to maintain each Cname as an accurate abso­
lute name using only local operations.

When a file is opened, the file name argument in the open (or chdir or bind or ...)
call is recorded in the Cname of the resulting Channel. When the file name begins
with a slash, the name is stored as is, subject to a cleanup pass described in the next
section. Otherwise, it is a local name, and the file name must be made absolute by pre­
fixing it with the Cname of the current directory, followed by a slash. For example, if
we are in /home/rob and chdir to bin, the Cname of the resulting Channel will
be the string /home/rob/bin.

This assumes, of course, that the local file name contains no .. elements. If it does,
instead of storing for example /home/rob/.. we delete the last element of the exist­
ing name and set the Cname to /home. To maintain the lexical naming property we
must guarantee that the resulting Cname, if it were to be evaluated, would yield the
identical directory to the one we actually do get by the local .. operation.

If the current directory is not a mount point, it is easy to maintain the lexical property.
If it is a mount point, though, it is still possible to maintain it on Plan 9 because the
mount table, a kernel-resident data structure, contains all the information about the
non-hierarchical connectivity of the name space. (On Unix, by contrast, symbolic links
are stored on the file server rather than in the kernel.) Moreover, the presence of a full
file name for each Channel in the mount table provides the information necessary to
resolve ambiguities.

The mount table is examined in the from�to direction when evaluating a name, but
.. points backwards in the hierarchy, so to evaluate .. the table must be examined in
the to�from direction. (��How did we get here?��)

The value of .. is ambiguous when there are multiple bindings (mount points) that

­ 7 ­

point to the directories involved in the evaluation of ... For example, return to our
original script with /n/bopp/v6 (containing a home directory for ken) and
/n/bopp/v7 (containing a home directory for rob) unioned into /home. This is rep­
resented by two entries in the mount table, from=/home, to=/n/bopp/v6 and
from=/home, to=/n/bopp/v7. If we have set our current directory to
/home/rob (which has landed us in the physical location /n/bopp/v7/rob) our
current directory is not a mount point but its parent is. The value of .. is ambiguous: it
could be /home, /n/bopp/v7, or maybe even /n/bopp/v6, and the ambiguity is
caused by two tofiles bound to the same fromfile. By our definition, if we now
evaluate .., we should acquire the directory /home; otherwise ../ken could not pos­
sibly result in ken�s home directory, which it should. On the other hand, if we had orig­
inally gone to /n/bopp/v7/rob, the name ../ken should not evaluate to ken�s
home directory because there is no directory /n/bopp/v7/ken (ken�s home direc­
tory is on v6). The problem is that by using local file operations, it is impossible to dis­
tinguish these cases: regardless of whether we got here using the name /home/rob or
/n/bopp/v7/rob, the resulting directory is the same. Moreover, the mount table
does not itself have enough information to disambiguate: when we do a local operation
to evaluate .. and land in /n/bopp/v7, we discover that the directory is a tofile
in the mount table; should we step back through the table to /home or not?

The solution comes from the Cnames themselves. Whether to step back through the
mount point from=/home, to=/n/bopp/v7 when evaluating .. in rob�s directory
is trivially resolved by asking the question, Does the Cname for the directory begin
/home? If it does, then the path that was evaluated to get us to the current directory
must have gone through this mount point, and we should back up through it to evaluate
..; if not, then this mount table entry is irrelevant.

More precisely, both before and after each .. element in the path name is evaluated, if
the directory is a tofile in the mount table, the corresponding fromfile is taken
instead, provided the Cname of the corresponding fromfile is the prefix of the
Cname of the original directory. Since we always know the full name of the directory we
are evaluating, we can always compare it against all the entries in the mount table that
point to it, thereby resolving ambiguous situations and maintaining the lexical property
of ... This check also guarantees we don�t follow a misleading mount point, such as
the entry pointing to /home when we are really in /n/bopp/v7/rob. Keeping the
full names with the Channels makes it easy to use the mount table to decide how we
got here and, therefore, how to get back.

In summary, the algorithm is as follows. Use the usual file system operations to walk to
..; call the resulting directory d. Lexically remove the last element of the initial file
name. Examine all entries in the mount table whose tofile is d and whose
fromfile has a Cname identical to the truncated name. If one exists, that
fromfile is the correct result; by construction, it also has the right Cname. In our
example, evaluating .. in /home/rob (really /n/bopp/v7/rob) will set d to
/n/bopp/v7; that is a tofile whose fromfile is /home. Removing the /rob
from the original Cname, we find the name /home, which matches that of the
fromfile, so the result is the fromfile, /home.

Since this implementation uses only local operations to maintain its names, it is possible
to confuse it by external changes to the file system. Deleting or renaming directories
and files that are part of a Cname, or modifying the mount table, can introduce errors.
With more implementation work, such mistakes could probably be caught, but in a net­
worked environment, with machines sharing a remote file server, renamings and dele­
tions made by one machine may go unnoticed by others. These problems, however, are
minor, uncommon and, most important, easy to understand. The method maintains the
lexical property of file names unless an external agent changes the name surrepti­
tiously; within a stable file system, it is always maintained and pwd is always right.

­ 8 ­

To recapitulate, maintaining the Channel�s absolute file names lexically and using the
names to disambiguate the mount table entries when evaluating .. at a mount point
combine to maintain the lexical definition of .. efficiently.

Cleaning names

The lexical processing can generate names that are messy or redundant, ones with extra
slashes or embedded ../ or ./ elements and other extraneous artifacts. As part of
the kernel�s implementation, we wrote a procedure, cleanname, that rewrites a name
in place to canonicalize its appearance. The procedure is useful enough that it is now
part of the Plan 9 C library and is employed by many programs to make sure they always
present clean file names.

Cleanname is analogous to the URL-cleaning rules defined in RFC 1808 [Field95],
although the rules are slightly different. Cleanname iteratively does the following
until no further processing can be done:

1. Reduce multiple slashes to a single slash.

2. Eliminate . path name elements (the current directory).

3. Eliminate .. path name elements (the parent directory) and the non-. non-..,
element that precedes them.

4. Eliminate .. elements that begin a rooted path, that is, replace /.. by / at the
beginning of a path.

5. Leave intact .. elements that begin a non-rooted path.

If the result of this process is a null string, cleanname returns the string ".", repre­
senting the current directory.

The fd2path system call

Plan 9 has a new system call, fd2path, to enable programs to extract the Cname
associated with an open file descriptor. It takes three arguments: a file descriptor, a
buffer, and the size of the buffer:

int fd2path(int fd, char *buf, int nbuf)

It returns an error if the file descriptor is invalid; otherwise it fills the buffer with the
name associated with fd. (If the name is too long, it is truncated; perhaps this condi­
tion should also draw an error.) The fd2path system call is very cheap, since all it
does is copy the Cname string to user space.

The Plan 9 implementation of getwd uses fd2path rather than the tricky algorithm
necessary in Unix:

char*
getwd(char *buf, int nbuf)
{

int n, fd;

fd = open(".", ΧREAD);
if(fd < 0)

return NULL;
n = fd2path(fd, buf, nbuf);
close(fd);
if(n < 0)

return NULL;
return buf;

}

(The Unix specification of getwd does not include a count argument.) This version of
getwd is not only straightforward, it is very efficient, reducing the performance

­ 9 ­

advantage of a built-in pwd command while guaranteeing that all commands, not just
pwd, see sensible directory names.

Here is a routine that prints the file name associated with each of its open file descrip­
tors; it is useful for tracking down file descriptors left open by network listeners, text
editors that spawn commands, and the like:

void
openfiles(void)
{

int i;
char buf[256];

for(i=0; i<NFD; i++)
if(fd2path(i, buf, sizeof buf) >= 0)

print("%d: %s\n", i, buf);
}

Uses of good names

Although pwd was the motivation for getting names right, good file names are useful in
many contexts and have become a key part of the Plan 9 programming environment.
The compilers record in the symbol table the full name of the source file, which makes it
easy to track down the source of buggy, old software and also permits the implementa­
tion of a program, src, to automate tracking it down. Given the name of a program,
src reads its symbol table, extracts the file information, and triggers the editor to open
a window on the program�s source for its main routine. No guesswork, no heuristics.

The openfiles routine was the inspiration for a new file in the /proc file system
[Kill84]. For process n, the file /proc/n/fd is a list of all its open files, including its
working directory, with associated information including its open status, I/O offset,
unique id (analogous to i-number) and file name. Here is the contents of the fd file for
a process in the window system on the machine being used to write this paper:

% cat /proc/125099/fd
/usr/rob
0 r M 5141 00000001.00000000 0 /mnt/term/dev/cons
1 w M 5141 00000001.00000000 51 /mnt/term/dev/cons
2 w M 5141 00000001.00000000 51 /mnt/term/dev/cons
3 r M 5141 0000000b.00000000 1166 /dev/snarf
4 rw M 5141 0ffffffc.00000000 288 /dev/draw/new
5 rw M 5141 00000036.00000000 4266337 /dev/draw/3/data
6 r M 5141 00000037.00000000 0 /dev/draw/3/refresh
7 r c 0 00000004.00000000 6199848 /dev/bintime

%

(The Linux implementation of /proc provides a related service by giving a directory in
which each file-descriptor-numbered file is a symbolic link to the file itself.) When
debugging errant systems software, such information can be valuable.

Another motivation for getting names right was the need to extract from the system an
accurate description of the mount table, so that a process�s name space could be
recreated on another machine, in order to move (or simulate) a computing environment
across the network. One program that does this is Plan 9�s cpu command, which
recreates the local name space on a remote machine, typically a large fast multiproces­
sor. Without accurate names, it was impossible to do the job right; now /proc pro­
vides a description of the name space of each process, /proc/n/ns:

­ 10 ­

% cat /proc/125099/ns
bind / /
mount -aC #s/boot /
bind #c /dev
bind #d /fd
bind -c #e /env
bind #p /proc
bind -c #s /srv
bind /386/bin /bin
bind -a /rc/bin /bin
bind /net /net
bind -a #l /net
mount -a #s/cs /net
mount -a #s/dns /net
bind -a #D /net
mount -c #s/boot /n/emelie
bind -c /n/emelie/mail /mail
mount -c /net/il/134/data /mnt/term
bind -a /usr/rob/bin/rc /bin
bind -a /usr/rob/bin/386 /bin
mount #s/boot /n/emelieother other
bind -c /n/emelieother/rob /tmp
mount #s/boot /n/dump dump
bind /mnt/term/dev/cons /dev/cons
...
cd /usr/rob
%

(The # notation identifies raw device drivers so they may be attached to the name
space.) The last line of the file gives the working directory of the process. The format
of this file is that used by a library routine, newns, which reads a textual description
like this and reconstructs a name space. Except for the need to quote # characters, the
output is also a shell script that invokes the user-level commands bind and mount,
which are just interfaces to the underlying system calls. However, files like
/net/il/134/data represent network connections; to find out where they point, so
that the corresponding calls can be reestablished for another process, they must be
examined in more detail using the network device files [PrWi93]. Another program, ns,
does this; it reads the /proc/n/ns file, decodes the information, and interprets it,
translating the network addresses and quoting the names when required:

...
mount -a '#s/dns' /net
...
mount -c il!135.104.3.100!12884 /mnt/term
...

These tools make it possible to capture an accurate description of a process�s name
space and recreate it elsewhere. And like the open file descriptor table, they are a boon
to debugging; it is always helpful to know exactly what resources a program is using.

Adapting to Unix

This work was done for the Plan 9 operating system, which has the advantage that the
non-hierarchical aspects of the name space are all known to the kernel. It should be
possible, though, to adapt it to a Unix system. The problem is that Unix has nothing
corresponding precisely to a Channel, which in Plan 9 represents the unique result of
evaluating a name. The vnode structure is a shared structure that may represent a file
known by several names, while the file structure refers only to open files, but for
example the current working directory of a process is not open. Possibilities to address

­ 11 ­

this discrepancy include introducing a Channel-like structure that connects a name
and a vnode, or maintaining a separate per-process table that maps names to
vnodes, disambiguating using the techniques described here. If it could be done the
result would be an implementation of .. that reduces the need for a built-in pwd in the
shell and offers a consistent, sensible interpretation of the �parent directory�.

We have not done this adaptation, but we recommend that the Unix community try it.

Conclusions

It should be easy to discover a well-defined, absolute path name for every open file and
directory in the system, even in the face of symbolic links and other non-hierarchical
elements of the file name space. In earlier versions of Plan 9, and all current versions of
Unix, names can instead be inconsistent and confusing.

The Plan 9 operating system now maintains an accurate name for each file, using inex­
pensive lexical operations coupled with local file system actions. Ambiguities are
resolved by examining the names themselves; since they reflect the path that was used
to reach the file, they also reflect the path back, permitting a dependable answer to be
recovered even when stepping backwards through a multiply-named directory.

Names make sense again: they are sensible and consistent. Now that dependable
names are available, system services can depend on them, and recent work in Plan 9 is
doing just that. We�the community of Unix and Unix-like systems�should have done
this work a long time ago.

Acknowledgements

Phil Winterbottom devised the ns command and the fd and ns files in /proc, based
on an earlier implementation of path name management that the work in this paper
replaces. Russ Cox wrote the final version of cleanname and helped debug the code
for reversing the mount table. Ken Thompson, Dave Presotto, and Jim McKie offered
encouragement and consultation.

References

[Field95] R. Fielding, ��Relative Uniform Resource Locators��, Network Working Group
Request for Comments: 1808, June, 1995.

[Kill84] T. J. Killian, ��Processes as Files��, Proceedings of the Summer 1984 USENIX
Conference, Salt Lake City, 1984, pp. 203-207.

[Korn94] David G. Korn, ��ksh: An Extensible High Level Language��, Proceedings of the
USENIX Very High Level Languages Symposium, Santa Fe, 1994, pp. 129-146.

[Korn00] David G. Korn, personal communication.

[PeMc95] Jan-Simon Pendry and Marshall Kirk McKusick, ��Union Mounts in 4.4BSD-
Lite��, Proceedings of the 1995 USENIX Conference, New Orleans, 1995.

[Pike91] Rob Pike, ��8½, the Plan 9 Window System��, Proceedings of the Summer 1991
USENIX Conference, Nashville, 1991, pp. 257-265.

[Pike93] Rob Pike, Dave Presotto, Ken Thompson, Howard Trickey, and Phil Winterbot­
tom, ��The Use of Name Spaces in Plan 9��, Χperating Systems Review, 27, 2, April 1993,
pp. 72-76.

[PrWi93] Dave Presotto and Phil Winterbottom, ��The Organization of Networks in Plan
9��, Proceedings of the Winter 1993 USENIX Conference, San Diego, 1993, pp. 43-50.

