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ABSTRACT

This paper describes the overall structure and function of the Plan 9
C compilers. A more detailed implementation document for any one of
the compilers is yet to be written.

1. Introduction

There are many compilers in the series. Six of the compilers (Intel 386, AMD64, Pow­
erPC, PowerPC 64-bit, ARM, MIPS R3000) are considered active and are used to compile
current versions of Plan 9. One of the compilers (SPARC) is maintained but is for older
machines for which we have no current ports of Plan 9; we are unlikely to port to any
SPARC machines. The DEC Alpha and Motorola 68020 compilers have been retired. Sev­
eral others (Motorola 68000, Intel 960, AMD 29000) have had only limited use, such as
to program peripherals or experimental devices. Any of the disused compilers could be
restored if needed.

2. Structure

The compiler is a single program that produces an object file. Combined in the com­
piler are the traditional roles of preprocessor, lexical analyzer, parser, code generator,
local optimizer, and first half of the assembler. The object files are binary forms of
assembly language, similar to what might be passed between the first and second
passes of an assembler.

Object files and libraries are combined by a loader program to produce the executable
binary. The loader combines the roles of second half of the assembler, global opti­
mizer, and loader. The names of the compilers, loaders, and assemblers are as follows:

SPARC kc kl ka
PowerPC qc ql qa
MIPS vc vl va
MIPS little-endian 0c 0l 0a
ARM 5c 5l 5a
AMD64 6c 6l 6a
Intel 386 8c 8l 8a
PowerPC 64-bit 9c 9l 9a

There is a further breakdown in the source of the compilers into object-independent
and object-dependent parts. All of the object-independent parts are combined into
source files in the directory /sys/src/cmd/cc. The object-dependent parts are col­
lected in a separate directory for each compiler, for example /sys/src/cmd/vc. All
of the code, both object-independent and object-dependent, is machine-independent
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and may be cross-compiled and executed on any of the architectures.

3. The Language

The compiler implements ANSI C with some restrictions and extensions [ANSI90]. Most
of the restrictions are due to personal preference, while most of the extensions were to
help in the implementation of Plan 9. There are other departures from the standard,
particularly in the libraries, that are beyond the scope of this paper.

3.1. Register, volatile, const

The keyword register is recognized syntactically but is semantically ignored. Thus
taking the address of a register variable is not diagnosed. The keyword volatile
disables all optimizations, in particular registerization, of the corresponding variable.
The keyword const generates warnings (if warnings are enabled by the compiler�s -w
option) of non-constant use of the variable, but does not affect the generated code.

3.2. The preprocessor

The C preprocessor is probably the biggest departure from the ANSI standard.

The preprocessor built into the Plan 9 compilers does not support #if, although it does
handle #ifdef and #include. If it is necessary to be more standard, the source text
can first be run through the separate ANSI C preprocessor, cpp.

3.3. Unnamed substructures

The most important and most heavily used of the extensions is the declaration of an
unnamed substructure or subunion. For example:

typedef
struct lock
{

int locked;
} Lock;

typedef
struct node
{

int type;
union
{

double dval;
float fval;
long lval;

};
Lock;

} Node;

Lock* lock;
Node* node;

The declaration of Node has an unnamed substructure of type Lock and an unnamed
subunion. One use of this feature allows references to elements of the subunit to be
accessed as if they were in the outer structure. Thus node->dval and
node->locked are legitimate references.

When an outer structure is used in a context that is only legal for an unnamed substruc­
ture, the compiler promotes the reference to the unnamed substructure. This is true for
references to structures and to references to pointers to structures. This happens in
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assignment statements and in argument passing where prototypes have been declared.
Thus, continuing with the example,

lock = node;

would assign a pointer to the unnamed Lock in the Node to the variable lock.
Another example,

extern void lock(Lock*);
func(...)
{

...
lock(node);
...

}

will pass a pointer to the Lock substructure.

Finally, in places where context is insufficient to identify the unnamed structure, the
type name (it must be a typedef) of the unnamed structure can be used as an identi­
fier. In our example, &node->Lock gives the address of the anonymous Lock struc­
ture.

3.4. Structure displays

A structure cast followed by a list of expressions in braces is an expression with the
type of the structure and elements assigned from the corresponding list. Structures are
now almost first-class citizens of the language. It is common to see code like this:

r = (Rectangle){point1, (Point){x,y+2}};

3.5. Initialization indexes

In initializers of arrays, one may place a constant expression in square brackets before
an initializer. This causes the next initializer to assign the indicated element. For exam­
ple:

enum errors
{

Etoobig,
Ealarm,
Egreg

};
char* errstrings[] =
{

[Ealarm] "Alarm call",
[Egreg] "Panic: out of mbufs",
[Etoobig] "Arg list too long",

};

In the same way, individual structures members may be initialized in any order by pre­
ceding the initialization with .tagname. Both forms allow an optional =, to be compat­
ible with a proposed extension to ANSI C.

3.6. External register

The declaration extern register will dedicate a register to a variable on a global
basis. It can be used only under special circumstances. External register variables must
be identically declared in all modules and libraries. The feature is not intended for effi­
ciency, although it can produce efficient code; rather it represents a unique storage
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class that would be hard to get any other way. On a shared-memory multi-processor,
an external register is one-per-processor and neither one-per-procedure (automatic) or
one-per-system (external). It is used for two variables in the Plan 9 kernel, u and m. U
is a pointer to the structure representing the currently running process and m is a
pointer to the per-machine data structure.

3.7. Long long

The compilers accept long long as a basic type meaning 64-bit integer. On some of
the machines this type is synthesized from 32-bit instructions.

3.8. Pragma

The compilers accept #pragma lib libname and pass the library name string uninter­
preted to the loader. The loader uses the library name to find libraries to load. If the
name contains $Χ, it is replaced with the single character object type of the compiler
(e.g., v for the MIPS). If the name contains $M, it is replaced with the architecture type
for the compiler (e.g., mips for the MIPS). If the name starts with / it is an absolute
pathname; if it starts with . then it is searched for in the loader�s current directory.
Otherwise, the name is searched from /$M/lib. Such #pragma statements in header
files guarantee that the correct libraries are always linked with a program without the
need to specify them explicitly at link time.

They also accept #pragma packed on (or yes or 1) to cause subsequently declared
data, until #pragma packed off (or no or 0), to be laid out in memory tightly
packed in successive bytes, disregarding the usual alignment rules. Accessing such
data can cause faults.

Similarly, #pragma profile off (or no or 0) causes subsequently declared func­
tions, until #pragma profile on (or yes or 1), to be marked as unprofiled. Such
functions will not be profiled when profiling is enabled for the rest of the program.

Two #pragma statements allow type-checking of print-like functions. The first, of
the form

#pragma varargck argpos error 2

tells the compiler that the second argument to error is a print format string (see
the manual page print(2)) that specifies how to format error�s subsequent arguments.
The second, of the form

#pragma varargck type "s" char*

says that the print format verb s processes an argument of type char*. If the
compiler�s -F option is enabled, the compiler will use this information to report type
violations in the arguments to print, error, and similar routines.

4. Χbject module conventions

The overall conventions of the runtime environment are important to runtime efficiency.
In this section, several of these conventions are discussed.

4.1. Register saving

In the Plan 9 compilers, the caller of a procedure saves the registers. With caller-saves,
the leaf procedures can use all the registers and never save them. If you spend a lot of
time at the leaves, this seems preferable. With callee-saves, the saving of the registers
is done in the single point of entry and return. If you are interested in space, this seems
preferable. In both, there is a degree of uncertainty about what registers need to be
saved. Callee-saved registers make it difficult to find variables in registers in debug­
gers. Callee-saved registers also complicate the implementation of longjmp. The
convincing argument is that with caller-saves, the decision to registerize a variable can
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include the cost of saving the register across calls. For a further discussion of caller-
vs. callee-saves, see the paper by Davidson and Whalley [Dav91].

In the Plan 9 operating system, calls to the kernel look like normal procedure calls,
which means the caller has saved the registers and the system entry does not have to.
This makes system calls considerably faster. Since this is a potential security hole, and
can lead to non-determinism, the system may eventually save the registers on entry, or
more likely clear the registers on return.

4.2. Calling convention

Older C compilers maintain a frame pointer, which is at a known constant offset from
the stack pointer within each function. For machines where the stack grows towards
zero, the argument pointer is at a known constant offset from the frame pointer. Since
the stack grows down in Plan 9, the Plan 9 compilers keep neither an explicit frame
pointer nor an explicit argument pointer; instead they generate addresses relative to the
stack pointer.

On some architectures, the first argument to a subroutine is passed in a register.

4.3. Functions returning structures

Structures longer than one word are awkward to implement since they do not fit in regis­
ters and must be passed around in memory. Functions that return structures are partic­
ularly clumsy. The Plan 9 compilers pass the return address of a structure as the first
argument of a function that has a structure return value. Thus

x = f(...)

is rewritten as

f(&x, ...).

This saves a copy and makes the compilation much less clumsy. A disadvantage is that
if you call this function without an assignment, a dummy location must be invented.

There is also a danger of calling a function that returns a structure without declaring it
as such. With ANSI C function prototypes, this error need never occur.

5. Implementation

The compiler is divided internally into four machine-independent passes, four
machine-dependent passes, and an output pass. The next nine sections describe each
pass in order.

5.1. Parsing

The first pass is a YACC-based parser [Joh79]. Declarations are interpreted immedi­
ately, building a block structured symbol table. Executable statements are put into a
parse tree and collected, without interpretation. At the end of each procedure, the
parse tree for the function is examined by the other passes of the compiler.

The input stream of the parser is a pushdown list of input activations. The preprocessor
expansions of macros and #include are implemented as pushdowns. Thus there is
no separate pass for preprocessing.

5.2. Typing

The next pass distributes typing information to every node of the tree. Implicit opera­
tions on the tree are added, such as type promotions and taking the address of arrays
and functions.
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5.3. Machine-independent optimization

The next pass performs optimizations and transformations of the tree, such as convert­
ing &*x and *&x into x. Constant expressions are converted to constants in this pass.

5.4. Arithmetic rewrites

This is another machine-independent optimization. Subtrees of add, subtract, and mul­
tiply of integers are rewritten for easier compilation. The major transformation is factor­
ing: 4+8*a+16*b+5 is transformed into 9+8*(a+2*b). Such expressions arise
from address manipulation and array indexing.

5.5. Addressability

This is the first of the machine-dependent passes. The addressability of a processor is
defined as the set of expressions that is legal in the address field of a machine language
instruction. The addressability of different processors varies widely. At one end of the
spectrum are the 68020 and VAX, which allow a complex mix of incrementing, decre­
menting, indexing, and relative addressing. At the other end is the MIPS, which allows
only registers and constant offsets from the contents of a register. The addressability
can be different for different instructions within the same processor.

It is important to the code generator to know when a subtree represents an address of a
particular type. This is done with a bottom-up walk of the tree. In this pass, the leaves
are labeled with small integers. When an internal node is encountered, it is labeled by
consulting a table indexed by the labels on the left and right subtrees. For example, on
the 68020 processor, it is possible to address an offset from a named location. In C,
this is represented by the expression *(&name+constant). This is marked address­
able by the following table. In the table, a node represented by the left column is
marked with a small integer from the right column. Marks of the form A

i
are address­

able while marks of the form N
i

are not addressable.

Node Marked
name A

1
const A

2
&A

1
A
3

A
3
+A

1
N
1

(note that this is not addressable)
*N

1
A
4

Here there is a distinction between a node marked A
1

and a node marked A
4

because
the address operator of an A

4
node is not addressable. So to extend the table:

Node Marked
&A

4
N
2

N
2
+N

1
N
1

The full addressability of the 68020 is expressed in 18 rules like this, while the address­
ability of the MIPS is expressed in 11 rules. When one ports the compiler, this table is
usually initialized so that leaves are labeled as addressable and nothing else. The code
produced is poor, but porting is easy. The table can be extended later.

This pass also rewrites some complex operators into procedure calls. Examples include
64-bit multiply and divide.

In the same bottom-up pass of the tree, the nodes are labeled with a Sethi-Ullman com­
plexity [Set70]. This number is roughly the number of registers required to compile the
tree on an ideal machine. An addressable node is marked 0. A function call is marked
infinite. A unary operator is marked as the maximum of 1 and the mark of its subtree.
A binary operator with equal marks on its subtrees is marked with a subtree mark plus
1. A binary operator with unequal marks on its subtrees is marked with the maximum
mark of its subtrees. The actual values of the marks are not too important, but the
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relative values are. The goal is to compile the harder (larger mark) subtree first.

5.6. Code generation

Code is generated by recursive descent. The Sethi-Ullman complexity completely
guides the order. The addressability defines the leaves. The only difficult part is com­
piling a tree that has two infinite (function call) subtrees. In this case, one subtree is
compiled into the return register (usually the most convenient place for a function call)
and then stored on the stack. The other subtree is compiled into the return register and
then the operation is compiled with operands from the stack and the return register.

There is a separate boolean code generator that compiles conditional expressions. This
is fundamentally different from compiling an arithmetic expression. The result of the
boolean code generator is the position of the program counter and not an expression.
The boolean code generator makes extensive use of De Morgan�s rule. The boolean
code generator is an expanded version of that described in chapter 8 of Aho, Sethi, and
Ullman [Aho87].

There is a considerable amount of talk in the literature about automating this part of a
compiler with a machine description. Since this code generator is so small (less than
500 lines of C) and easy, it hardly seems worth the effort.

5.7. Registerization

Up to now, the compiler has operated on syntax trees that are roughly equivalent to the
original source language. The previous pass has produced machine language in an
internal format. The next two passes operate on the internal machine language struc­
tures. The purpose of the next pass is to reintroduce registers for heavily used vari­
ables.

All of the variables that can be potentially registerized within a procedure are placed in a
table. (Suitable variables are any automatic or external scalars that do not have their
addresses extracted. Some constants that are hard to reference are also considered for
registerization.) Four separate data flow equations are evaluated over the procedure on
all of these variables. Two of the equations are the normal set-behind and used-ahead
bits that define the life of a variable. The two new bits tell if a variable life crosses a
function call ahead or behind. By examining a variable over its lifetime, it is possible to
get a cost for registerizing. Loops are detected and the costs are multiplied by three for
every level of loop nesting. Costs are sorted and the variables are replaced by available
registers on a greedy basis.

The 68020 has two different types of registers. For the 68020, two different costs are
calculated for each variable life and the register type that affords the better cost is used.
Ties are broken by counting the number of available registers of each type.

Note that externals are registerized together with automatics. This is done by evaluat­
ing the semantics of a ��call�� instruction differently for externals and automatics. Since
a call goes outside the local procedure, it is assumed that a call references all externals.
Similarly, externals are assumed to be set before an ��entry�� instruction and assumed to
be referenced after a ��return�� instruction. This makes sure that externals are in mem­
ory across calls.

The overall results are satisfactory. It would be nice to be able to do this processing in a
machine-independent way, but it is impossible to get all of the costs and side effects of
different choices by examining the parse tree.

Most of the code in the registerization pass is machine-independent. The major
machine-dependency is in examining a machine instruction to ask if it sets or refer­
ences a variable.
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5.8. Machine code optimization

The next pass walks the machine code for opportunistic optimizations. For the most
part, this is highly specific to a particular processor. One optimization that is performed
on all of the processors is the removal of unnecessary ��move�� instructions. Ironically,
most of these instructions were inserted by the previous pass. There are two patterns
that are repetitively matched and replaced until no more matches are found. The first
tries to remove ��move�� instructions by relabeling variables.

When a ��move�� instruction is encountered, if the destination variable is set before the
source variable is referenced, then all of the references to the destination variable can
be renamed to the source and the ��move�� can be deleted. This transformation uses the
reverse data flow set up in the previous pass.

An example of this pattern is depicted in the following table. The pattern is in the left
column and the replacement action is in the right column.

MΧVE a->b (remove)
(sequence with no mention of a)
USE b USE a
(sequence with no mention of a)
SET b SET b

Experiments have shown that it is marginally worthwhile to rename uses of the destina­
tion variable with uses of the source variable up to the first use of the source variable.

The second transform will do relabeling without deleting instructions. When a ��move��
instruction is encountered, if the source variable has been set prior to the use of the
destination variable then all of the references to the source variable are replaced by the
destination and the ��move�� is inverted. Typically, this transformation will alter two
��move�� instructions and allow the first transformation another chance to remove code.
This transformation uses the forward data flow set up in the previous pass.

Again, the following is a depiction of the transformation where the pattern is in the left
column and the rewrite is in the right column.

SET a SET b
(sequence with no use of b)
USE a USE b
(sequence with no use of b)
MΧVE a->b MΧVE b->a

Iterating these transformations will usually get rid of all redundant ��move�� instructions.

A problem with this organization is that the costs of registerization calculated in the
previous pass must depend on how well this pass can detect and remove redundant
instructions. Often, a fine candidate for registerization is rejected because of the cost
of instructions that are later removed.

5.9. Writing the object file

The last pass walks the internal assembly language and writes the object file. The
object file is reduced in size by about a factor of three with simple compression tech­
niques. The most important aspect of the object file format is that it is independent of
the compiling machine. All integer and floating numbers in the object code are con­
verted to known formats and byte orders.
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6. The loader

The loader is a multiple pass program that reads object files and libraries and produces
an executable binary. The loader also does some minimal optimizations and code
rewriting. Many of the operations performed by the loader are machine-dependent.

The first pass of the loader reads the object modules into an internal data structure that
looks like binary assembly language. As the instructions are read, code is reordered to
remove unconditional branch instructions. Conditional branch instructions are inverted
to prevent the insertion of unconditional branches. The loader will also make a copy of
a few instructions to remove an unconditional branch.

The next pass allocates addresses for all external data. Typical of processors is the
MIPS, which can reference ±32K bytes from a register. The loader allocates the register
R30 as the static pointer. The value placed in R30 is the base of the data segment plus
32K. It is then cheap to reference all data in the first 64K of the data segment. External
variables are allocated to the data segment with the smallest variables allocated first. If
all of the data cannot fit into the first 64K of the data segment, then usually only a few
large arrays need more expensive addressing modes.

For the MIPS processor, the loader makes a pass over the internal structures, exchang­
ing instructions to try to fill ��delay slots�� with useful work. If a useful instruction can­
not be found to fill a delay slot, the loader will insert ��noop�� instructions. This pass is
very expensive and does not do a good job. About 40% of all instructions are in delay
slots. About 65% of these are useful instructions and 35% are ��noops.�� The vendor-
supplied assembler does this job more effectively, filling about 80% of the delay slots
with useful instructions.

On the 68020 processor, branch instructions come in a variety of sizes depending on
the relative distance of the branch. Thus the size of branch instructions can be mutually
dependent. The loader uses a multiple pass algorithm to resolve the branch lengths
[Szy78]. Initially, all branches are assumed minimal length. On each subsequent pass,
the branches are reassessed and expanded if necessary. When no more expansions
occur, the locations of the instructions in the text segment are known.

On the MIPS processor, all instructions are one size. A single pass over the instructions
will determine the locations of all addresses in the text segment.

The last pass of the loader produces the executable binary. A symbol table and other
tables are produced to help the debugger to interpret the binary symbolically.

The loader places absolute source line numbers in the symbol table. The name and
absolute line number of all #include files is also placed in the symbol table so that
the debuggers can associate object code to source files.

7. Performance

The following is a table of the source size of the MIPS compiler.

lines module
509 machine-independent headers

1070 machine-independent YACC source
6090 machine-independent C source

545 machine-dependent headers
6532 machine-dependent C source

298 loader headers
5215 loader C source

The following table shows timing of a test program that plays checkers, running on a
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MIPS R4000. The test program is 26 files totaling 12600 lines of C. The execution time
does not significantly depend on library implementation. Since no other compiler runs
on Plan 9, the Plan 9 tests were done with the Plan 9 operating system; the other tests
were done on the vendor�s operating system. The hardware was identical in both cases.
The optimizer in the vendor�s compiler is reputed to be extremely good.

4.49s Plan 9 vc -N compile time (opposite of -Χ)
1.72s Plan 9 vc -N load time

148.69s Plan 9 vc -N run time

15.07s Plan 9 vc compile time (-Χ implicit)
1.66s Plan 9 vc load time

89.96s Plan 9 vc run time

14.83s vendor cc compile time
0.38s vendor cc load time

104.75s vendor cc run time

43.59s vendor cc -Χ compile time
0.38s vendor cc -Χ load time

76.19s vendor cc -Χ run time

8.19s vendor cc -Χ3 compile time
35.97s vendor cc -Χ3 load time
71.16s vendor cc -Χ3 run time

To compare the Intel compiler, a program that is about 40% bit manipulation and about
60% single precision floating point was run on the same 33 MHz 486, once under Win­
dows compiled with the Watcom compiler, version 10.0, in 16-bit mode and once under
Plan 9 in 32-bit mode. The Plan 9 execution time was 27 sec while the Windows execu­
tion time was 31 sec.

8. Conclusions

The new compilers compile quickly, load slowly, and produce medium quality object
code. The compilers are relatively portable, requiring but a couple of weeks� work to
produce a compiler for a different computer. For Plan 9, where we needed several com­
pilers with specialized features and our own object formats, this project was indispens­
able. It is also necessary for us to be able to freely distribute our compilers with the
Plan 9 distribution.

Two problems have come up in retrospect. The first has to do with the division of labor
between compiler and loader. Plan 9 runs on multi-processors and as such compila­
tions are often done in parallel. Unfortunately, all compilations must be complete
before loading can begin. The load is then single-threaded. With this model, any shift
of work from compile to load results in a significant increase in real time. The same is
true of libraries that are compiled infrequently and loaded often. In the future, we may
try to put some of the loader work back into the compiler.

The second problem comes from the various optimizations performed over several
passes. Often optimizations in different passes depend on each other. Iterating the
passes could compromise efficiency, or even loop. We see no real solution to this prob­
lem.
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