How to Use the Plan 9 C Compiler?

Rob Pike
rob@plan9.bell-labs.com

Introduction

The C compiler on Plan 9 is a wholly new program; in fact it was the first piece of
software written for what would eventually become Plan 9 from Bell Labs. Programmers
familiar with existing C compilers will find a number of differences in both the language
the Plan 9 compiler accepts and in how the compiler is used.

The compiler is really a set of compilers, one for each architecture — MIPS, SPARC,
Intel 386, Power PC, ARM, etc. — that accept a dialect of ANSI C and efficiently produce
fairly good code for the target machine. There is a packaging of the compiler that
accepts strict ANSI C for a POSIX environment, but this document focuses on the native
Plan 9 environment, that in which all the system source and almost all the utilities are
written.

Source

The language accepted by the compilers is the core 1989 ANSI C language with
some modest extensions, a greatly simplified preprocessor, a smaller library that
includes system calls and related facilities, and a completely different structure for
include files.

Official ANSI C accepts the old (K&R) style of declarations for functions; the Plan 9
compilers are more demanding. Without an explicit run-time flag (—B) whose use is dis-
couraged, the compilers insist on new-style function declarations, that is, prototypes for
function arguments. The function declarations in the libraries’ include files are all in the
new style so the interfaces are checked at compile time. For C programmers who have
not yet switched to function prototypes the clumsy syntax may seem repellent but the
payoff in stronger typing is substantial. Those who wish to import existing software to
Plan 9 are urged to use the opportunity to update their code.

The compilers include an integrated preprocessor that accepts the familiar
#include, #define for macros both with and without arguments, #undef, #1ine,
#ifdef, #ifndef, and #endif. It supports neither #if nor ##, although it does
honor a few #pragmas. The #if directive was omitted because it greatly complicates
the preprocessor, is never necessary, and is usually abused. Conditional compilation in
general makes code hard to understand; the Plan 9 source uses it sparingly. Also,
because the compilers remove dead code, regular if statements with constant condi-
tions are more readable equivalents to many #ifs. To compile imported code
ineluctably fouled by #if there is a separate command, /bin/cpp, that implements
the complete ANSI C preprocessor specification.

Include files fall into two groups: machine-dependent and machine-independent.

The machine-independent files occupy the directory /sys/include; the others are
placed in a directory appropriate to the machine, such as /mips/include. The

* This paper has been revised to reflect the move to 21-bit Unicode.



-2

compiler searches for include files first in the machine-dependent directory and then in
the machine-independent directory. At the time of writing there are thirty-one
machine-independent include files and two (per machine) machine-dependent ones:
<ureg.h> and <u.h>. The first describes the layout of registers on the system stack,
for use by the debugger. The second defines some architecture-dependent types such
as jmp_buf for setjmp and the va_arg and va_list macros for handling argu-
ments to variadic functions, as well as a set of typedef abbreviations for unsigned
short and so on.

Here is an excerpt from /386 /include/u.h:

#define nil ((void*)0)
typedef unsigned short ushort;
typedef unsigned char uchar;
typedef unsigned long ulong;

typedef unsigned int uint;
typedef signed char schar;
typedef long long vlong;
typedef long jmp_buf[2];
#define JMPBUFSP 0
#define JMPBUFPC 1
#define JMPBUFDPC 0

Plan 9 programs use nil for the name of the zero-valued pointer. The type vlong is
the largest integer type available; on most architectures it is a 64-bit value. A couple of
other types in <u.h> are u32int, which is guaranteed to have exactly 32 bits (a possi-
bility on all the supported architectures) and mpdigit, which is used by the multipreci-
sion math package <mp.h>. The #define constants permit an architecture-
independent (but compiler-dependent) implementation of stack-switching using
setjmp and longjmp.
Every Plan 9 C program begins
#include <u.h>

because all the other installed header files use the typedefs declared in <u.h>.

In strict ANSI C, include files are grouped to collect related functions in a single
file: one for string functions, one for memory functions, one for 1/0, and none for sys-
tem calls. Each include file is protected by an #ifdef to guarantee its contents are
seen by the compiler only once. Plan 9 takes a different approach. Other than a few
include files that define external formats such as archives, the files in /sys/include
correspond to libraries. If a program is using a library, it includes the corresponding
header. The default C library comprises string functions, memory functions, and so on,
largely as in ANSI C, some formatted I/O routines, plus all the system calls and related
functions. To use these functions, one must #include the file <1libc.h>, which in
turn must follow <u.h>, to define their prototypes for the compiler. Here is the com-
plete source to the traditional first C program:

#include <u.h>
#include <libc.h>

void

main(void)

{
print("hello world\n");
exits(0);

}

The print routine and its relatives fprint and sprint resemble the similarly-



-3-

named functions in Standard 1/0O but are not attached to a specific I/0 library. In Plan 9
main is not integer-valued; it should call exits, which takes a string argument (or
null; here ANSI C promotes the 0 to a char*). All these functions are, of course, docu-
mented in the Programmer’s Manual.

To use printf, <stdio.h> must be included to define the function prototype
for printf:

#include <u.h>
#include <libc.h>
#include <stdio.h>

void

main(int argc, char *argv[])

{
printf("%s: hello world; argc = %d\n", argv[0], argc);
exits(0);

¥

In practice, Standard 1/0 is not used much in Plan 9. /O libraries are discussed in a
later section of this document.

There are libraries for handling regular expressions, raster graphics, windows, and
so on, and each has an associated include file. The manual for each library states which
include files are needed. The files are not protected against multiple inclusion and
themselves contain no nested #includes. Instead the programmer is expected to
sort out the requirements and to #include the necessary files once at the top of each
source file. In practice this is trivial: this way of handling include files is so straightfor-
ward that it is rare for a source file to contain more than half a dozen #includes.

The compilers do their own register allocation so the register keyword is
ignored. For different reasons, volatile and const are also ignored.

To make it easier to share code with other systems, Plan 9 has a version of the
compiler, pcc, that provides the standard ANSI C preprocessor, headers, and libraries
with POSIX extensions. Pcc is recommended only when broad external portability is
mandated. It compiles slower, produces slower code (it takes extra work to simulate
POSIX on Plan 9), eliminates those parts of the Plan 9 interface not related to POSIX, and
illustrates the clumsiness of an environment designed by committee. Pcc is described
in more detail in APE—The ANSI/POSIX Environment, by Howard Trickey.

Process

Each CPU architecture supported by Plan 9 is identified by a single, arbitrary,
alphanumeric character: k for SPARC, g for 32-bit Power PC, v for MIPS, O for little-
endian MIPS, 5 for ARM v5 and later 32-bit architectures, 6 for AMD64, 8 for Intel 386,
and 9 for 64-bit Power PC. The character labels the support tools and files for that
architecture. For instance, for the 386 the compiler is 8c, the assembler is 8a, the link
editor/loader is 81, the object files are suffixed .8, and the default name for an exe-
cutable file is 8. out. Before we can use the compiler we therefore need to know which
machine we are compiling for. The next section explains how this decision is made; for
the moment assume we are building 386 binaries and make the mental substitution for
8 appropriate to the machine you are actually using.

To convert source to an executable binary is a two-step process. First run the
compiler, 8c, on the source, say file.c, to generate an object file file.8. Then
run the loader, 81, to generate an executable 8.out that may be run (on a 386
machine):



8c file.c
81 file.S8
8.out

The loader automatically links with whatever libraries the program needs, usually includ-
ing the standard C library as defined by <l1ibc.h>. Of course the compiler and loader
have lots of options, both familiar and new; see the manual for details. The compiler
does not generate an executable automatically; the output of the compiler must be
given to the loader. Since most compilation is done under the control of mk (see below),
this is rarely an inconvenience.

The distribution of work between the compiler and loader is unusual. The compiler
integrates preprocessing, parsing, register allocation, code generation and some assem-
bly. Combining these tasks in a single program is part of the reason for the compiler’s
efficiency. The loader does instruction selection, branch folding, instruction scheduling,
and writes the final executable. There is no separate C preprocessor and no assembler
in the usual pipeline. Instead the intermediate object file (here a . 8 file) is a type of
binary assembly language. The instructions in the intermediate format are not exactly
those in the machine. For example, on the 68020 the object file may specify a MOVE
instruction but the loader will decide just which variant of the MOVE instruction — MOVE
immediate, MOVE quick, MOVE address, etc. — is most efficient.

The assembler, 8a, is just a translator between the textual and binary representa-
tions of the object file format. It is not an assembler in the traditional sense. It has lim-
ited macro capabilities (the same as the integral C preprocessor in the compiler), clumsy
syntax, and minimal error checking. For instance, the assembler will accept an instruc-
tion (such as memory-to-memory MOVE on the MIPS) that the machine does not actually
support; only when the output of the assembler is passed to the loader will the error be
discovered. The assembler is intended only for writing things that need access to
instructions invisible from C, such as the machine-dependent part of an operating sys-
tem; very little code in Plan 9 is in assembly language.

The compilers take an option —S that causes them to print on their standard out-
put the generated code in a format acceptable as input to the assemblers. This is of
course merely a formatting of the data in the object file; therefore the assembler is just
an ASCllI-to-binary converter for this format. Other than the specific instructions, the
input to the assemblers is largely architecture-independent; see ‘““A Manual for the Plan
9 Assembler’’, by Rob Pike, for more information.

The loader is an integral part of the compilation process. Each library header file
contains a #pragma that tells the loader the name of the associated archive; it is not
necessary to tell the loader which libraries a program uses. The C run-time startup is
found, by default, in the C library. The loader starts with an undefined symbol, _main,
that is resolved by pulling in the run-time startup code from the library. (The loader
undefines _mainp when profiling is enabled, to force loading of the profiling start-up
instead.)

Unlike its counterpart on other systems, the Plan 9 loader rearranges data to opti-
mize access. This means the order of variables in the loaded program is unrelated to its
order in the source. Most programs don’t care, but some assume that, for example, the
variables declared by

int a;
int b;

will appear at adjacent addresses in memory. On Plan 9, they won’t.



Heterogeneity

When the system starts or a user logs in the environment is configured so the
appropriate binaries are available in /bin. The configuration process is controlled by
an environment variable, $cputype, with value such as mips, 386, arm, or sparc.
For each architecture there is a directory in the root, with the appropriate name, that
holds the binary and library files for that architecture. Thus /mips/1ib contains the
object code libraries for MIPS programs, /mips/include holds MIPS-specific include
files, and /mips/bin has the MIPS binaries. These binaries are attached to /bin at
boot time by binding /$cputype/binto /bin, so /bin always contains the correct
files.

The MIPS compiler, vc, by definition produces object files for the MIPS architec-
ture, regardless of the architecture of the machine on which the compiler is running.
There is a version of vc compiled for each architecture: /mips/bin/vc,
/arm/bin/vc, /sparc/bin/vc, and so on, each capable of producing MIPS object
files regardless of the native instruction set. If one is running on a SPARC,
/sparc/bin/vc will compile programs for the MIPS; if one is running on machine
$cputype, /$cputype/bin/vc will compile programs for the MIPS.

Because of the bindings that assemble /bin, the shell always looks for a com-
mand, say date, in /bin and automatically finds the file /$cputype/bin/date.
Therefore the MIPS compiler is known as just vc; the shell will invoke /bin/vc and
that is guaranteed to be the version of the MIPS compiler appropriate for the machine
running the command. Regardless of the architecture of the compiling machine,
/bin/vc is always the MIPS compiler.

Also, the output of vc and v1 is completely independent of the machine type on
which they are executed: .v files compiled (with vc) on a SPARC may be linked (with
v1) on a 386. (The resulting v.out will run, of course, only on a MIPS.) Similarly, the
MIPS libraries in /mips/1ib are suitable for loading with v1 on any machine; there is
only one set of MIPS libraries, not one set for each architecture that supports the MIPS
compiler.

Heterogeneity and mk

Most software on Plan 9 is compiled under the control of mk, a descendant of
make that is documented in the Programmer’s Manual. A convention used throughout
the mkfiles makes it easy to compile the source into binary suitable for any architec-
ture.

The variable $cputype is advisory: it reports the architecture of the current envi-
ronment, and should not be modified. A second variable, $objtype, is used to set
which architecture is being compiled for. The value of $objtype can be used by a
mkfile to configure the compilation environment.

In each machine’s root directory there is a short mkfile that defines a set of mac-
ros for the compiler, loader, etc. Here is /mips/mkfile:

</sys/src/mkfile.proto
CC=vc
LD=v1l

O=v
AS=va

The line
</sys/src/mkfile.proto

causes mk to include the file /sys/src/mkfile.proto, which contains general
definitions:



#
# common mkfile parameters shared by all architectures
#

0S=5689qv

CPUS=arm amd64 386 power mips
CFLAGS=-FTVw

LEX=1lex

YACC=yacc

MK=/bin/mk

CC is obviously the compiler, AS the assembler, and LD the loader. O is the suffix for
the object files and CPUS and OS are used in special rules described below.

Here is a mkfile to build the installed source for sam:

</$objtype/mkfile

OBJ=sam. $0 address.$0 buffer.$0 cmd.$0 disc.$0 error.$0 \
file.$0 io.$0 1list.$0 mesg.$0 moveto.$0 multi.$0O \
plan9.3$0 rasp.$0 regexp.$0 string.$0 sys.$0 xec.$0

$0.out: $OBJ
$I.D $OBJ

install: $0.out
cp $0.out /$objtype/bin/sam

installall:
for(objtype in $CPUS) mk install

%.%$0: %.cC
$CC $CFLAGS $stem.c

$OBJ: sam.h errors.h mesg.h
address.$0 cmd. $0 parse.$0 xec.$0 unix.$0: parse.h
clean:V:

rm —f [$0S].out *.[$0S] y.tab.?

(The actual mkfile imports most of its rules from other secondary files, but this exam-
ple works and is not misleading.) The first line causes mk to include the contents of
/$objtype/mkfile in the current mkfile. If $objtype is mips, this inserts the
MIPS macro definitions into the mkfile. In this case the rule for $O.out uses the
MIPS tools to build v.out. The %. $0 rule in the file uses mk’s pattern matching facili-
ties to convert the source files to the object files through the compiler. (The text of the
rules is passed directly to the shell, rc, without further translation. See the mk manual
if any of this is unfamiliar.) Because the default rule builds $0.out rather than sam, it
is possible to maintain binaries for multiple machines in the same source directory with-
out conflict. This is also, of course, why the output files from the various compilers and
loaders have distinct names.

The rest of the mkfile should be easy to follow; notice how the rules for clean
and installall (that is, install versions for all architectures) use other macros
defined in /$objtype/mkfile. In Plan 9, mkfiles for commands conventionally
contain rules to install (compile and install the version for $objtype),
installall (compile and install for all $objtypes), and clean (remove all object
files, binaries, etc.).

The mkfile is easy to use. To build a MIPS binary, v.out:



% objtype=mips
% mk

To build and install a MIPS binary:

% objtype=mips
% mk install

To build and install all versions:
% mk installall

These conventions make cross-compilation as easy to manage as traditional native com-
pilation. Plan 9 programs compile and run without change on machines from large mul-
tiprocessors to laptops. For more information about this process, see ‘““Plan 9 Mkfiles”’,
by Bob Flandrena.

Portability

Within Plan 9, it is painless to write portable programs, programs whose source is
independent of the machine on which they execute. The operating system is fixed and
the compiler, headers and libraries are constant so most of the stumbling blocks to
portability are removed. Attention to a few details can avoid those that remain.

Plan 9 is a heterogeneous environment, so programs must expect that external files
will be written by programs on machines of different architectures. The compilers, for
instance, must handle without confusion object files written by other machines. The tra-
ditional approach to this problem is to pepper the source with #ifdefs to turn byte-
swapping on and off. Plan 9 takes a different approach: of the handful of machine-
dependent #ifdefs in all the source, almost all are deep in the libraries. Instead pro-
grams read and write files in a defined format, either (for low volume applications) as
formatted text, or (for high volume applications) as binary in a known byte order. If the
external data were written with the most significant byte first, the following code reads a
4-byte integer correctly regardless of the architecture of the executing machine (assum-
ing an unsigned long holds 4 bytes):

ulong

getlong(void)

{
ulong 1;
1 = (getchar()&0xFF)<<24;
1l |= (getchar()&0xFF)<<16;
1l |= (getchar()&0xFF)<<8;
1l |= (getchar()&0xFF)<<0;
return 1;

¥

Note that this code does not ‘swap’ the bytes; instead it just reads them in the correct
order. Variations of this code will handle any binary format and also avoid problems
involving how structures are padded, how words are aligned, and other impediments to
portability. Be aware, though, that extra care is needed to handle floating point data.

Efficiency hounds will argue that this method is unnecessarily slow and clumsy
when the executing machine has the same byte order (and padding and alignment) as
the data. The CPU cost of I/O processing is rarely the bottleneck for an application,
however, and the gain in simplicity of porting and maintaining the code greatly out-
weighs the minor speed loss from handling data in this general way. This method is
how the Plan 9 compilers, the window system, and even the file servers transmit data
between programs.



-8-

To port programs beyond Plan 9, where the system interface is more variable, it is
probably necessary to use pcc and hope that the target machine supports ANSI C and
POSIX.

1/0

The default C library, defined by the include file <libc.h>, contains no buffered
I/O package. It does have several entry points for printing formatted text: print out-
puts text to the standard output, fprint outputs text to a specified integer file
descriptor, and sprint places text in a character array. To access library routines for
buffered 1/0, a program must explicitly include the header file associated with an appro-
priate library.

The recommended 1/0 library, used by most Plan 9 utilities, is bio (buffered 1/0),
defined by <bio.h>. There also exists an implementation of ANSI Standard 1/0,
stdio.

Bio is small and efficient, particularly for buffer-at-a-time or line-at-a-time 1/0.
Even for character-at-a-time 1/0, however, it is significantly faster than the Standard
I/0 library, stdio. Its interface is compact and regular, although it lacks a few conve-
niences. The most noticeable is that one must explicitly define buffers for standard
input and output; bio does not predefine them. Here is a program to copy input to
output a byte at a time using bio:

#include <u.h>
#include <libc.h>
#include <bio.h>

Biobuf bin;
Biobuf Dbout;

main(void)
{

int c;

Binit(&bin, 0, OREAD);
Binit(&bout, 1, OWRITE);

while((c=Bgetc(&bin)) != Beof)
Bputc(&bout, c);
exits(0);
}

For peak performance, we could replace Bgetc and Bputc by their equivalent in-line
macros BGETC and BPUTC but the performance gain would be modest. For more infor-
mation on bio, see the Programmer’s Manual.

Perhaps the most dramatic difference in the 1/0 interface of Plan 9 from other sys-
tems’ is that text is not ASCIl. The format for text in Plan 9 is a byte-stream encoding
of 21-bit characters. The character set is based on the Unicode Standard and is back-
ward compatible with ASCII: characters with value 0 through 127 are the same in both
sets. The 21-bit characters, called runes in Plan 9, are encoded using a representation
called UTF, an encoding that is becoming accepted as a standard. (ISO calls it UTF-8§;
throughout Plan 9 it’s just called UTF.) UTF defines multibyte sequences to represent
character values from 0 to 1,114,111. In UTF, character values up to 127 decimal, 7F
hexadecimal, represent themselves, so straight ASCII files are also valid UTF. Also, UTF
guarantees that bytes with values 0 to 127 (NUL to DEL, inclusive) will appear only when
they represent themselves, so programs that read bytes looking for plain ASCII charac-
ters will continue to work. Any program that expects a one-to-one correspondence
between bytes and characters will, however, need to be modified. An example is



-9-

parsing file names. File names, like all text, are in UTF, so it is incorrect to search for a
character in a string by strchr(filename, c) because the character might have a
multi-byte encoding. The correct method is to call utfrune(filename, c),
defined in rune(2), which interprets the file name as a sequence of encoded characters
rather than bytes. In fact, even when you know the character is a single byte that can
represent only itself, it is safer to use utfrune because that assumes nothing about
the character set and its representation.

The library defines several symbols relevant to the representation of characters.
Any byte with unsigned value less than Runesync will not appear in any multi-byte
encoding of a character. Utfrune compares the character being searched against
Runesync to see if it is sufficient to call strchr or if the byte stream must be inter-
preted. Any byte with unsigned value less than Runeself is represented by a single
byte with the same value. Finally, when errors are encountered converting to runes
from a byte stream, the library returns the rune value Runeerror and advances a sin-
gle byte. This permits programs to find runes embedded in binary data.

Bio includes routines Bgetrune and Bputrune to transform the external byte
stream UTF format to and from internal 21-bit runes. Also, the %s format to print
accepts UTF; %c prints a character after narrowing it to 8 bits. The %S format prints a
null-terminated sequence of runes; %C prints a character after narrowing it to 21 bits.
For more information, see the Programmer’s Manual, in particular utf(6) and rune(2),
and the paper, “Hello world, or KoAnuépox kooue, or & AZHIZ A, by Rob Pike and
Ken Thompson; there is not room for the full story here.

These issues affect the compiler in several ways. First, the C source is in UTF.
ANSI says C variables are formed from ASCIl alphanumerics, but comments and literal
strings may contain any characters encoded in the native encoding, here UTF. The dec-
laration

char *cp = "abcy";

initializes the variable cp to point to an array of bytes holding the UTF representation of
the characters abcy . The type Rune is defined in <u.h> to be ushort, which is also
the ‘wide character’ type in the compiler. Therefore the declaration

Rune *rp = L"abcy";

initializes the variable rp to point to an array of unsigned long integers holding the
21-bit values of the characters abcy. Note that in both these declarations the charac-
ters in the source that represent abcy are the same; what changes is how those charac-
ters are represented in memory in the program. The following two lines:

print("%s\n", "abcy");
print("%S\n", L"abcy");

produce the same UTF string on their output, the first by copying the bytes, the second
by converting from runes to bytes.

In C, character constants are integers but narrowed through the char type. The
Unicode character ¥ has value 255, so if the char type is signed, the constant ¥’ has
value -1 (which is equal to EOF). On the other hand, L.’ ¥’ narrows through the wide
character type, ushort, and therefore has value 255.

Finally, although it’s not ANSI C, the Plan 9 C compilers assume any character with
value above Runeself is an alphanumeric, so « is a legal, if non-portable, variable
name.



-10 -

Arguments

Some macros are defined in <libc.h> for parsing the arguments to main().
They are described in ARG(2) but are fairly self-explanatory. There are four macros:
ARGBEGIN and ARGEND are used to bracket a hidden switch statement within which
ARGC returns the current option character (rune) being processed and ARGF returns the
argument to the option, as in the loader option —o file. Here, for example, is the
code at the beginning of main() in ramfs. c (see ramfs(1)) that cracks its arguments:

void
main(int argc, char *argv[])
{

char *defmnt;

int p[2];

int mfd[2];

int stdio = O0;

defmnt = "/tmp";

ARGBEGIN{

case ’'i’:
defmnt
stdio = 1
mfd[0]
mfd[1]
break;

1l
o

Ro-

case 's’:
defmnt
break;
defmnt
break;
default:

usage();
}ARGEND

0;

case m

ARGF();

Extensions

The compiler has several extensions to 1989 ANSI C, all of which are used exten-
sively in the system source. Some of these have been adopted in later ANSI C standards.
First, structure displays permit struct expressions to be formed dynamically. Given
these declarations:

typedef struct Point Point;
typedef struct Rectangle Rectangle;

struct Point

{
int x, y;
}s
struct Rectangle
{
Point min, max;
}s

Point P, 4, add(Point, Point);
Rectangle r;
int X, V;

this assignment may appear anywhere an assignment is legal:



-11 -

r = (Rectangle){add(p, q), (Point){x, y+3}};

The syntax is the same as for initializing a structure but with a leading cast.

If an anonymous structure or union is declared within another structure or union,
the members of the internal structure or union are addressable without prefix in the
outer structure. This feature eliminates the clumsy naming of nested structures and,
particularly, unions. For example, after these declarations,

struct Lock

{
int locked;
}s
struct Node
{
int type;
uniond{
double dval;
double fval;
long lval;
}; /* anonymous union */
struct Lock; /* anonymous structure */
} *node;
void lock(struct Lock*);

one may refer to node—->type, node—>dval, node->fval, node—>1val, and
node—>1locked. Moreover, the address of a struct Node may be used without a
cast anywhere that the address of a struct Lock is used, such as in argument lists.
The compiler automatically promotes the type and adjusts the address. Thus one may
invoke 1ock(node).

Anonymous structures and unions may be accessed by type name if (and only if)
they are declared using a typedef name. For example, using the above declaration
for Point, one may declare

struct

{ .
int type;
Point;

} p;

and refer to p.Point.

In the initialization of arrays, a number in square brackets before an element sets
the index for the initialization. For example, to initialize some elements in a table of
function pointers indexed by ASCII character,

void percent(void), slash(void);
void (*func[128]) (void) =
{

[’%’] percent,
[’/’1 slash,
};

A similar syntax allows one to initialize structure elements:



-12 -

Point p =
{
.y 100,
.x 200
}s

These initialization syntaxes were later added to ANSI C, with the addition of an equals
sign between the index or tag and the value. The Plan 9 compiler accepts either form.

Finally, the declaration
extern register reg;

(this appearance of the register keyword is not ignored) allocates a global register to
hold the variable reg. External registers must be used carefully: they need to be
declared in all source files and libraries in the program to guarantee the register is not
allocated temporarily for other purposes. Especially on machines with few registers,
such as the i386, it is easy to link accidentally with code that has already usurped the
global registers and there is no diagnostic when this happens. Used wisely, though,
external registers are powerful. The Plan 9 operating system uses them to access per-
process and per-machine data structures on a multiprocessor. The storage class they
provide is hard to create in other ways.

The compile-time environment

The code generated by the compilers is ‘optimized’ by default: variables are placed
in registers and peephole optimizations are performed. The compiler flag —N disables
these optimizations. Registerization is done locally rather than throughout a function:
whether a variable occupies a register or the memory location identified in the symbol
table depends on the activity of the variable and may change throughout the life of the
variable. The —N flag is rarely needed; its main use is to simplify debugging. There is
no information in the symbol table to identify the registerization of a variable, so —N
guarantees the variable is always where the symbol table says it is.

Another flag, —w, turns on warnings about portability and problems detected in
flow analysis. Most code in Plan 9 is compiled with warnings enabled; these warnings
plus the type checking offered by function prototypes provide most of the support of
the Unix tool 1int more accurately and with less chatter. Two of the warnings, ‘used
and not set’ and ‘set and not used’, are almost always accurate but may be triggered
spuriously by code with invisible control flow, such as in routines that call Llongjmp.
The compiler statements

SET(v1l);
USED(Vv2);

decorate the flow graph to silence the compiler. Either statement accepts a comma-
separated list of variables. Use them carefully: they may silence real errors. For the
common case of unused parameters to a function, leaving the name off the declaration
silences the warnings. That is, listing the type of a parameter but giving it no associated
variable name does the trick.

Debugging

There are two debuggers available on Plan 9. The first, and older, is db, a revision
of Unix adb. The other, acid, is a source-level debugger whose commands are state-
ments in a true programming language. Acid is the preferred debugger, but since it
borrows some elements of db, notably the formats for displaying values, it is worth
knowing a little bit about db.



-13 -

Both debuggers support multiple architectures in a single program; that is, the pro-
grams are db and acid, not for example vdb and vacid. They also support cross-
architecture debugging comfortably: one may debug a 386 binary on a MIPS.

Imagine a program has crashed mysteriously:

% X11/X

Fatal server bug!

failed to create default stipple

X 106: suicide: sys: trap: fault read addr=0x0 pc=0x00105fb8
%

When a process dies on Plan 9 it hangs in the ‘broken’ state for debugging. Attach a
debugger to the process by naming its process id:

% acid 106
/proc/106/text:mips plan 9 executable

/sys/lib/acid/port
/sys/lib/acid/mips
acid:

The acid function stk () reports the stack traceback:

acid: stk()
At pc:0x105fb8:abort+0x24 /sys/src/ape/lib/ap/stdio/abort.c:6
abort() /sys/src/ape/lib/ap/stdio/abort.c:4
called from FatalError+#4e
/sys/src/X/mit/server/dix/misc.c:421
FatalError(s9=#e02, s8=#4901d200, s7=#2, s6=#72701, s5=#1,
s4=#7270d, s3=#6, s2=#12, sl1l=#ff37flc, sO0=#6, f=#7270f)
/sys/src/X/mit/server/dix/misc.c:416
called from gnotscreeninit+#4ce
/sys/src/X/mit/server/ddx/gnot/gnot.c:792
gnotscreeninit(snum=#0, sc=#80db0)
/sys/src/X/mit/server/ddx/gnot/gnot.c:766
called from AddScreen+#16e
/n/bootes/sys/src/X/mit/server/dix/main.c:610
AddScreen(pfnInit=0x0000129c,argc=0x00000001,argv=0x7fffffe4d)
/sys/src/X/mit/server/dix/main.c:530
called from InitOutput+0x80
/sys/src/X/mit/server/ddx/brazil/brddx.c:522
InitOutput(argc=0x00000001,argv=0x7fffffe4)
/sys/src/X/mit/server/ddx/brazil/brddx.c:511
called from main+0x294
/sys/src/X/mit/server/dix/main.c:225
main(argc=0x00000001,argv=0x7fffffed)
/sys/src/X/mit/server/dix/main.c:136
called from _main+0x24
/sys/src/ape/lib/ap/mips/main9.s:8

The function 1 stk () is similar but also reports the values of local variables. Note that
the traceback includes full file names; this is a boon to debugging, although it makes
the output much noisier.

To use acid well you will need to learn its input language; see the ‘*“Acid Manual’’,
by Phil Winterbottom, for details. For simple debugging, however, the information in
the manual page is sufficient. In particular, it describes the most useful functions for
examining a process.

The compiler does not place information describing the types of variables in the
executable, but a compile-time flag provides crude support for symbolic debugging.
The —a flag to the compiler suppresses code generation and instead emits source text



-14 -

in the acid language to format and display data structure types defined in the pro-
gram. The easiest way to use this feature is to put a rule in the mkfile:

syms: main. $0
$CC —a main.c > syms

Then from within acid,
acid: include("sourcedirectory/syms")

to read in the relevant definitions. (For multi-file source, you need to be a little fancier;
see 8c(1)). This text includes, for each defined compound type, a function with that
name that may be called with the address of a structure of that type to display its con-
tents. For example, if rect is a global variable of type Rectangle, one may execute

Rectangle(*rect)

to display it. The * (indirection) operator is necessary because of the way acid works:
each global symbol in the program is defined as a variable by acid, with value equal to
the address of the symbol.

Another common technique is to write by hand special acid code to define func-
tions to aid debugging, initialize the debugger, and so on. Conventionally, this is
placed in a file called acid in the source directory; it has a line

include("sourcedirectory/syms");
to load the compiler-produced symbols. One may edit the compiler output directly but
it is wiser to keep the hand-generated acid separate from the machine-generated.

To make things simple, the default rules in the system mkfiles include entries to
make foo.acid from foo.c, so one may use mk to automate the production of
acid definitions for a given C source file.

There is much more to say here. See acid manual page, the reference manual, or
the paper ““Acid: A Debugger Built From A Language”’, also by Phil Winterbottom.



