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ABSTRACT

The security architecture of the Plan 9™ operating system has
recently been redesigned to address some technical shortcomings. This
redesign provided an opportunity also to make the system more conve-
hient to use securely. Plan 9 has thus improved in two ways not usually
seen together: it has become more secure and easier to use.

The central component of the new architecture is a per-user self-
contained agent called factotum. Factotum securely holds a copy of
the user’s keys and negotiates authentication protocols, on behalf of the
user, with secure services around the network. Concentrating security
code in a single program offers several advantages including: ease of
update or repair to broken security software and protocols; the ability to
run secure services at a lower privilege level; uniform management of
keys for all services; and an opportunity to provide single sign on, even
to unchanged legacy applications. Factotum has an unusual architec-
ture: it is implemented as a Plan 9 file server.

1. Introduction

Secure computing systems face two challenges: first, they must employ sophisticated
technology that is difficult to design and prove correct; and second, they must be easy
for regular people to use. The question of ease of use is sometimes neglected, but it is
essential: weak but easy-to-use security can be more effective than strong but
difficult-to-use security if it is more likely to be used. People lock their front doors
when they leave the house, knowing full well that a burglar is capable of picking the lock
(or avoiding the door altogether); yet few would accept the cost and awkwardness of a
bank vault door on the house even though that might reduce the probability of a rob-
bery. A related point is that users need a clear model of how the security operates (if
not how it actually provides security) in order to use it well; for example, the clarity of a
lock icon on a web browser is offset by the confusing and typically insecure steps for
installing X.509 certificates.

The security architecture of the Plan 9 operating system [Pike95] has recently been
redesigned to make it both more secure and easier to use. By security we mean three
things: first, the business of authenticating users and services; second, the safe han-
dling, deployment, and use of keys and other secret information; and third, the use of
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encryption and integrity checks to safeguard communications from prying eyes.

The old security architecture of Plan 9 had several engineering problems in common
with other operating systems. First, it had an inadequate notion of security domain.
Once a user provided a password to connect to a local file store, the system required
that the same password be used to access all the other file stores. That is, the system
treated all network services as belonging to the same security domain.

Second, the algorithms and protocols used in authentication, by nature tricky and diffi-
cult to get right, were compiled into the various applications, kernel modules, and file
servers. Changes and fixes to a security protocol required that all components using
that protocol needed to be recompiled, or at least relinked, and restarted.

Third, the file transport protocol, 9P [Pike93], that forms the core of the Plan 9 system,
had its authentication protocol embedded in its design. This meant that fixing or
changing the authentication used by 9P required deep changes to the system. If some-
one were to find a way to break the protocol, the system would be wide open and very
hard to fix.

These and a number of lesser problems, combined with a desire for more widespread
use of encryption in the system, spurred us to rethink the entire security architecture of
Plan 9.

The centerpiece of the new architecture is an agent, called factotum, that handles the
user’s keys and negotiates all security interactions with system services and applica-
tions. Like a trusted assistant with a copy of the owner’s keys, factotum does all the
negotiation for security and authentication. Programs no longer need to be compiled
with cryptographic code; instead they communicate with factotum agents that repre-
sent distinct entities in the cryptographic exchange, such as a user and server of a
secure service. If a security protocol needs to be added, deleted, or modified, only
factotum needs to be updated for all system services to be kept secure.

Building on factotum, we modified secure services in the system to move user
authentication code into factotum; made authentication a separable component of
the file server protocol; deployed new security protocols; designed a secure file store,
called secstore, to protect our keys but make them easy to get when they are
needed; designed a new kernel module to support transparent use of Transport Layer
Security (TLS) [RFC2246]; and began using encryption for all communications within the
system. The overall architecture is illustrated in Figure 1a.

Secure protocols and algorithms are well understood and are usually not the weakest
link in a system’s security. In practice, most security problems arise from buggy
servers, confusing software, or administrative oversights. It is these practical problems
that we are addressing. Although this paper describes the algorithms and protocols we
are using, they are included mainly for concreteness. Our main intent is to present a
simple security architecture built upon a small trusted code base that is easy to verify
(whether by manual or automatic means), easy to understand, and easy to use.

Although it is a subjective assessment, we believe we have achieved our goal of ease of
use. That we have achieved our goal of improved security is supported by our plan to
move our currently private computing environment onto the Internet outside the corpo-
rate firewall. The rest of this paper explains the architecture and how it is used, to
explain why a system that is easy to use securely is also safe enough to run in the open
network.

2. An Agent for Security

One of the primary reasons for the redesign of the Plan 9 security infrastructure was to
remove the authentication method both from the applications and from the kernel.
Cryptographic code is large and intricate, so it should be packaged as a separate com-
ponent that can be repaired or modified without altering or even relinking applications
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Figure 1a. Components of the security architecture. Each box is a (typically) separate machine;
each ellipse a process. The ellipses labeled Fy are factotum processes; those labeled Py are
the pieces and proxies of a distributed program. The authentication server is one of several
repositories for users’ security information that factotum processes consult as required.
Secstore is a shared resource for storing private information such as keys; factotum con-
sults it for the user during bootstrap.

and services that depend on it. If a security protocol is broken, it should be trivial to
repair, disable, or replace it on the fly. Similarly, it should be possible for multiple pro-
grams to use a common security protocol without embedding it in each program.

Some systems use dynamically linked libraries (DLLs) to address these configuration
issues. The problem with this approach is that it leaves security code in the same
address space as the program using it. The interactions between the program and the
DLL can therefore accidentally or deliberately violate the interface, weakening security.
Also, a program using a library to implement secure services must run at a privilege
level necessary to provide the service; separating the security to a different program
makes it possible to run the services at a weaker privilege level, isolating the privileged
code to a single, more trustworthy component.

Following the lead of the SSH agent [Ylon96], we give each user an agent process
responsible for holding and using the user’s keys. The agent program is called
factotum because of its similarity to the proverbial servant with the power to act on
behalf of his master because he holds the keys to all the master’s possessions. It is
essential that factotum keep the keys secret and use them only in the owner’s inter-
est. Later we’ll discuss some changes to the kernel to reduce the possibility of
factotum leaking information inadvertently.

Factotum is implemented, like most Plan 9 services, as a file server. It is convention-
ally mounted upon the directory /mnt/factotum, and the files it serves there are
analogous to virtual devices that provide access to, and control of, the services of the
factotum. The next few sections describe the design of factotum and how it oper-
ates with the other pieces of Plan 9 to provide security services.

2.1. Logging in

To make the discussions that follow more concrete, we begin with a couple of examples
showing how the Plan 9 security architecture appears to the user. These examples both
involve a user gre logging in after booting a local machine. The user may or may not
have a secure store in which all his keys are kept. If he does, factotum will prompt
him for the password to the secure store and obtain keys from it, prompting only when
a key isn’t found in the store. Otherwise, factotum must prompt for each key.

In the typescripts, \n represents a literal newline character typed to force a default
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response. User input is in italics, and long lines are folded and indented to fit.

This first example shows a user logging in without help from the secure store. First,
factotum prompts for a user name that the local kernel will use:

user[none]: gre

(Default responses appear in square brackets.) The kernel then starts accessing local
resources and requests, through factotum, a user/password pair to do so:

lAdding key: dom=cs.bell-labs.com
proto=p9skl

user[gre]l: \n

password: ****

Now the user is logged in to the local system, and the mail client starts up:

!Adding key: proto=apop
server=plan9.bell-labs.com

user[gre]: \n

password: ****

Factotum is doing all the prompting and the applications being started are not even
touching the keys. Note that it’s always clear which key is being requested.

Now consider the same login sequence, but in the case where gre has a secure store
account:

user[none]: gre
secstore paSSWOI‘d: Fokkkkkkkok
STA PIN+SecurID: x xixixix

That’s the last gre will hear from factotum unless an attempt is made to contact a
system for which no key is kept in the secure store.

2.2. The factotum

Each computer running Plan 9 has one user id that owns all the resources on that sys-
tem — the scheduler, local disks, network interfaces, etc. That user, the host owner, is
the closest analogue in Plan 9 to a Unix root account (although it is far weaker; rather
than having special powers, as its name implies the host owner is just a regular user
that happens to own the resources of the local machine). On a single-user system,
which we call a terminal, the host owner is the id of the terminal’s user. Shared servers
such as CPU servers normally have a pseudo-user that initially owns all resources. At
boot time, the Plan 9 kernel starts a factotum executing as, and therefore with the
privileges of, the host owner.

New processes run as the same user as the process which created them. When a pro-
cess must take on the identity of a new user, such as to provide a login shell on a
shared CPU server, it does so by proving to the host owner’s factotum that it is
authorized to do so. This is done by running an authentication protocol with
factotum to prove that the process has access to secret information which only the
new user should possess. For example, consider the setup in Figure 1a. If a user on the
terminal wants to log in to the CPU server using the Plan 9 cpu service [Pike93], then
P+ might be the cpu client program and P the cpu server. Neither P~ nor P+ knows
the details of the authentication. They do need to be able to shuttle messages back and
forth between the two factotums, but this is a generic function easily performed
without knowing, or being able to extract, secrets in the messages. Pt will make a net-
work connection to P-. Pt and P will then relay messages between the factotum
owned by the user, Fr, and the one owned by the CPU server, F, until mutual authenti-
cation has been established. Later sections describe the RPC between factotum and
applications and the library functions to support proxy operations.
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The kernel always uses a single local instance of factotum, running as the host
owner, for its authentication purposes, but a regular user may start other factotum
agents. In fact, the factotum representing the user need not be running on the same
machine as its client. For instance, it is easy for a user on a CPU server, through stan-
dard Plan 9 operations, to replace the /mnt/factotum in the user’s private file name
space on the server with a connection to the factotum running on the terminal. (The
usual file system permissions prevent interlopers from doing so maliciously.) This per-
mits secure operations on the CPU server to be transparently validated by the user’s own
factotum, so secrets need never leave the user’s terminal. The SSH agent [Ylon96]
does much the same with special SSH protocol messages, but an advantage to making
our agent a file system is that we need no new mechanism to access our remote agent;
remote file access is sufficient.

Within factotum, each protocol is implemented as a state machine with a generic
interface, so protocols are in essence pluggable modules, easy to add, modify, or drop.
Writing a message to and reading a message from factotum each require a separate
RPC and result in a single state transition. Therefore factotum always runs to com-
pletion on every RPC and never blocks waiting for input during any authentication.
Moreover, the number of simultaneous authentications is limited only by the amount of
memory we’re willing to dedicate to representing the state machines.

Authentication protocols are implemented only within factotum, but adding and
removing protocols does require relinking the binary, so factotum processes (but no
others) need to be restarted in order to take advantage of new or repaired protocols.

At the time of writing, factotum contains authentication modules for the Plan 9
shared key protocol (p9sk1), SSH’s RSA authentication, passwords in the clear, APOP,
CRAM, PPP’s CHAP, Microsoft PPP’s MSCHAP, and VNC’s challenge/response.

2.3. Local capabilities

A capability system, managed by the kernel, is used to empower factotum to grant
permission to another process to change its user id. A kernel device driver implements
two files, /dev/caphash and /dev/capuse. The write-only file /dev/caphash
can be opened only by the host owner, and only once. Factotum opens this file
immediately after booting.

To use the files, factotum creates a string of the form useridlQ@userid2@random-
string, uses SHA1 HMAC to hash useridi@userid2 with key random-string, and writes
that hash to /dev/caphash. Factotum then passes the original string to another
process on the same machine, running as user useridl, which writes the string to
/dev/capuse. The kernel hashes the string and looks for a matching hash in its list.
If it finds one, the writing process’s user id changes from useridl to userid2. Once
used, or if a timeout expires, the capability is discarded by the kernel.

The capabilities are local to the machine on which they are created. Hence a
factotum running on one machine cannot pass capabilities to processes on another
and expect them to work.

2.4. Keys

We define the word key to mean not only a secret, but also a description of the context
in which that secret is to be used: the protocol, server, user, etc. to which it applies.
That is, a key is a combination of secret and descriptive information used to authenti-
cate the identities of parties transmitting or receiving information. The set of keys used
in any authentication depends both on the protocol and on parameters passed by the
program requesting the authentication.

Taking a tip from SDSI [RiLal, which represents security information as textual S-
expressions, keys in Plan 9 are represented as plain UTF-8 text. Text is easily
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understood and manipulated by users. By contrast, a binary or other cryptic format can
actually reduce overall security. Binary formats are difficult for users to examine and
can only be cracked by special tools, themselves poorly understood by most users. For
example, very few people know or understand what’s inside their X.509 certificates.
Most don’t even know where in the system to find them. Therefore, they have no idea
what they are trusting, and why, and are powerless to change their trust relationships.
Textual, centrally stored and managed keys are easier to use and safer.

Plan 9 has historically represented databases as attribute/value pairs, since they are a
good foundation for selection and projection operations. Factotum therefore repre-
sents the keys in the format attribute=value, where attribute is an identifier, possibly
with a single-character prefix, and value is an arbitrary quoted string. The pairs them-
selves are separated by white space. For example, a Plan 9 key and an APOP key might
be represented like this:

dom=bell-labs.com proto=p9skl user=gre
!password="don’ 't tell’

proto=apop server=x.y.com user=gre
!password="open sesame’

If a value is empty or contains white space or single quotes, it must be quoted; quotes
are represented by doubled single quotes. Attributes that begin with an exclamation
mark (!) are considered secret. Factotum will never let a secret value escape its
address space and will suppress keyboard echo when asking the user to type one.

A program requesting authentication selects a key by providing a query, a list of ele-
ments to be matched by the key. Each element in the list is either an attribute=value
pair, which is satisfied by keys with exactly that pair; or an attribute followed by a ques-
tion mark, attribute?, which is satisfied by keys with some pair specifying the attribute.
A key matches a query if every element in the list is satisfied. For instance, to select the
APOP key in the previous example, an APOP client process might specify the query

server=x.y.com proto=apop

Internally, factotum’s APOP module would add the requirements of having user and
I password attributes, forming the query

server=x.y.com proto=apop user? !password?
when searching for an appropriate key.

Factotum modules expect keys to have some well-known attributes. For instance, the
proto attribute specifies the protocol module responsible for using a particular key,
and protocol modules may expect other well-known attributes (many expect keys to
have !password attributes, for example). Additional attributes can be used as com-
ments or for further discrimination without intervention by factotum; for example,
the APOP and IMAP mail clients conventionally include a server attribute to select an
appropriate key for authentication.

Unlike in SDSI, keys in Plan 9 have no nested structure. This design keeps the represen-
tation simple and straightforward. If necessary, we could add a nested attribute or, in
the manner of relational databases, an attribute that selects another tuple, but so far the
simple design has been sufficient.

A simple common structure for all keys makes them easy for users to administer, but
the set of attributes and their interpretation is still protocol-specific and can be subtle.
Users may still need to consult a manual to understand all details. Many attributes
(proto, user, password, server) are self-explanatory and our short experience
has not uncovered any particular difficulty in handling keys. Things will likely get mes-
sier, however, when we grapple with public keys and their myriad components.



2.5. Protecting keys

Secrets must be prevented from escaping factotum. There are a number of ways they
could leak: another process might be able to debug the agent process, the agent might
swap out to disk, or the process might willingly disclose the key. The last is the easiest
to avoid: secret information in a key is marked as such, and whenever factotum prints
keys or queries for new ones, it is careful to avoid displaying secret information. (The
only exception to this is the ‘“plaintext password’ protocol, which consists of sending
the values of the user and !password attributes. Only keys tagged with
proto=pass can have their passwords disclosed by this mechanism.)

Preventing the first two forms of leakage requires help from the kernel. In Plan 9, every
process is represented by a directory in the /proc file system. Using the files in this
directory, other processes could (with appropriate access permission) examine
factotum’'s memory and registers. Factotum is protected from processes of other
users by the default access bits of its /proc directory. However, we’d also like to pro-
tect the agent from other processes owned by the same user, both to avoid honest mis-
takes and to prevent an unattended terminal being exploited to discover secret pass-
words. To do this, we added a control message to /proc called private. Once the
factotum process has written private to its /proc/pid/ctl file, no process can
access factotum’s memory through /proc. (Plan 9 has no other mechanism, such
as /dev/kmem, for accessing a process’s memory.)

Similarly, the agent’s address space should not be swapped out, to prevent discovering
unencrypted keys on the swapping media. The noswap control message in /proc
prevents this scenario. Neither private nor noswap is specific to factotum.
User-level file servers such as dossrv, which interprets FAT file systems, could use
noswap to keep their buffer caches from being swapped to disk.

Despite our precautions, attackers might still find a way to gain access to a process run-
ning as the host owner on a machine. Although they could not directly access the keys,
attackers could use the local factotum to perform authentications for them. In the
case of some keys, for example those locking bank accounts, we want a way to disable
or at least detect such access. That is the role of the confirm attribute in a key.
Whenever a key with a confirm attribute is accessed, the local user must confirm use
of the key via a local GUI. The next section describes the actual mechanism.

We have not addressed leaks possible as a result of someone rebooting or resetting a
machine running factotum. For example, someone could reset a machine and reboot
it with a debugger instead of a kernel, allowing them to examine the contents of mem-
ory and find keys. We have not found a satisfactory solution to this problem.

2.6. Factotum transactions

External programs manage factotum’s internal key state through its file interface,
writing textual key and delkey commands to the /mnt/factotum/ctl file. Both
commands take a list of attributes as an argument. Key creates a key with the given
attributes, replacing any extant key with an identical set of public attributes. Delkey
deletes all keys that match the given set of attributes. Reading the ctl file returns a
list of keys, one per line, displaying only public attributes. The following example illus-
trates these interactions.



% cd /mnt/factotum

% 1ls -1

—1lrw———mm—m——— gre gre 0 Jan 30 22:17 confirm
——rW——————— gre gre 0 Jan 30 22:17 ctl
-1lr————- gre gre 0 Jan 30 22:17 log
-1lrw——m7m—— gre gre 0 Jan 30 22:17 needkey
——r——r——r—— gre gre 0 Jan 30 22:17 proto
——rw—rw—rw— gre gre 0 Jan 30 22:17 rpc

% cat >ctl

key dom=bell-labs.com proto=p9skl user=gre
Ipassword="don’ ’t tell’

key proto=apop server=x.y.com user=gre
!password="bite me’

AD

% cat ctl

key dom=bell-labs.com proto=p9skl user=gre

key proto=apop server=x.y.com user=gre

% echo ’delkey proto=apop’ >ctl

% cat ctl

key dom=bell-labs.com proto=p9skl user=gre

%

(A file with the 1 bit set can be opened by only one process at a time.)

The heart of the interface is the rpc file. Programs authenticate with factotum by
writing a request to the rpc file and reading back the reply; this sequence is called an
RPC transaction. Requests and replies have the same format: a textual verb possibly fol-
lowed by arguments, which may be textual or binary. The most common reply verb is
ok, indicating success. An RPC session begins with a start transaction; the argument
is a key query as described earlier. Once started, an RPC conversation usually consists
of a sequence of read and write transactions. If the conversation is successful, an
authinfo transaction will return information about the identities learned during the
transaction. The attxr transaction returns a list of attributes for the current conversa-
tion; the list includes any attributes given in the start query as well as any public
attributes from keys being used.

As an example of the rpc file in action, consider a mail client connecting to a mail
server and authenticating using the POP3 protocol’s APOP challenge-response com-
mand. There are four programs involved: the mail client P, the client factotum F,
the mail server P, and the server factotum Fs. All authentication computations are
handled by the factotum processes. The mail programs’ role is just to relay mes-
sages.

At startup, the mail server at x.y.com begins an APOP conversation with its
factotum to obtain the banner greeting, which includes a challenge:

P¢- Fs: start proto=apop role=server
F5—>PS: ok

P¢-> Fg: read

Fs—- Ps: ok +OK POP3 challenge

Having obtained the challenge, the server greets the client:
P¢— Pc-: +0OK POP3 challenge

The client then uses an APOP conversation with its factotum to obtain a response:
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Pc- Fc: start proto=apop role=client
server=x.y.com

FC—’PC: ok
Pc— Fc: write +0K POP3 challenge
Fc-Pc: ok

Pc- Fc: read
Fc—- Pc: ok APOP gre response

Factotum requires that start requests include a proto attribute, and the APOP
module requires an additional role attribute, but the other attributes are optional and
only restrict the key space. Before responding to the start transaction, the client
factotum looks for a key to use for the rest of the conversation. Because of the argu-
ments in the start request, the key must have public attributes proto=apop and
server=x.y.com; as mentioned earlier, the APOP module additionally requires that
the key have user and !password attributes. Now that the client has obtained a
response from its factotum, it echoes that response to the server:

Pc - Ps: APOP gre response

Similarly, the server passes this message to its factotum and obtains another to send
back.

P¢—> Fs: write APOP gre response
F5—>PS: ok

P> Fg: read

Fs—- Ps: ok +OK welcome

P¢— Pc-: +OK welcome

Now the authentication protocol is done, and the server can retrieve information about
what the protocol established.

P¢— Fs: authinfo
Fs¢—- Ps: ok client=gre
capability=capability

The authinfo data is a list of attr=value pairs, here a client user name and a capabil-
ity. (Protocols that establish shared secrets or provide mutual authentication indicate
this by adding appropriate attr=value pairs.) The capability can be used by the server to
change its identity to that of the client, as described earlier. Once it has changed its
identity, the server can access and serve the client’s mailbox.

Two more files provide hooks for a graphical factotum control interface. The first,
confirm, allows the user detailed control over the use of certain keys. If a key has a
confirm= attribute, then the user must approve each use of the key. A separate pro-
gram with a graphical interface reads from the confirm file to see when a confirma-
tion is necessary. The read blocks until a key usage needs to be approved, whereupon it
will return a line of the form

confirm tag=1 attributes

requesting permission to use the key with those public attributes. The graphical inter-
face then prompts the user for approval and writes back

tag=1 answer=yes

(or answer=no).

The second file, needkey, diverts key requests. In the APOP example, if a suitable key
had not been found during the start transaction, factotum would have indicated
failure by returning a response indicating what key was needed:
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Fc - Pc: needkey proto=apop
server=x.y.com user? !password?

A typical client would then prompt the user for the desired key information, create a
new key via the ctl file, and then reissue the start request. If the needkey file is
open, then instead of failing, the transaction will block, and the next read from the
/mnt/factotum/needkey file will return a line of the form

needkey tag=1 attributes

The graphical interface then prompts the user for the needed key information, creates
the key via the ctl file, and writes back tag=1 to resume the transaction.

The remaining files are informational and used for debugging. The proto file contains
a list of supported protocols (to see what protocols the system supports, cat
/mnt/factotum/proto), and the log file contains a log of operations and debug-
ging output enabled by a debug control message.

The next few sections explain how factotum is used by system services.

3. Authentication in 9P

Plan 9 uses a remote file access protocol, 9P [Pike93], to connect to resources such as
the file server and remote processes. The original design for 9P included special mes-
sages at the start of a conversation to authenticate the user. Multiple users can share a
single connection, such as when a CPU server runs processes for many users connected
to a single file server, but each must authenticate separately. The authentication proto-
col, similar to that of Kerberos [Stei88], used a sequence of messages passed between
client, file server, and authentication server to verify the identities of the user, calling
machine, and serving machine. One major drawback to the design was that the authen-
tication method was defined by 9P itself and could not be changed. Moreover, there was
no mechanism to relegate authentication to an external (trusted) agent, so a process
implementing 9P needed, besides support for file service, a substantial body of crypto-
graphic code to implement a handful of startup messages in the protocol.

A recent redesign of 9P addressed a number of file service issues outside the scope of
this paper. On issues of authentication, there were two goals: first, to remove details
about authentication from the protocol itself; second, to allow an external program to
execute the authentication part of the protocol. In particular, we wanted a way to
quickly incorporate ideas found in other systems such as SFS [Mazi99].

Since 9P is a file service protocol, the solution involved creating a new type of file to be
served: an authentication file. Connections to a 9P service begin in a state that allows
no general file access but permits the client to open an authentication file by sending a
special message, generated by the new fauth system call:

afd = fauth(int fd, char *servicename);

Here fd is the user’s file descriptor for the established network connection to the 9P
server and servicename is the name of the desired service offered on that server,
typically the file subsystem to be accessed. The returned file descriptor, afd, is a
unique handle representing the authentication file created for this connection to authen-
ticate to this service; it is analogous to a capability. The authentication file represented
by afd is not otherwise addressable on the server, such as through the file name hierar-
chy. In all other respects, it behaves like a regular file; most important, it accepts stan-
dard read and write operations.

To prove its identity, the user process (via factotum) executes the authentication pro-
tocol, described in the next section of this paper, over the afd file descriptor with ordi-
nary reads and writes. When client and server have successfully negotiated, the authen-
tication file changes state so it can be used as evidence of authority in mount.



-11 -

Once identity is established, the process presents the (now verified) afd as proof of
identity to the mount system call:

mount(int fd, int afd, char *mountpoint,
int flag, char *servicename)

If the mount succeeds, the user now has appropriate permissions for the file hierarchy
made visible at the mount point.

This sequence of events has several advantages. First, the actual authentication proto-
col is implemented using regular reads and writes, not special 9P messages, so they can
be processed, forwarded, proxied, and so on by any 9P agent without special arrange-
ment. Second, the business of negotiating the authentication by reading and writing the
authentication file can be delegated to an outside agent, in particular factotum; the
programs that implement the client and server ends of a 9P conversation need no
authentication or cryptographic code. Third, since the authentication protocol is not
defined by 9P itself, it is easy to change and can even be negotiated dynamically.
Finally, since afd acts like a capability, it can be treated like one: handed to another
process to give it special permissions; kept around for later use when authentication is
again required; or closed to make sure no other process can use it.

All these advantages stem from moving the authentication negotiation into reads and
writes on a separate file. As is often the case in Plan 9, making a resource (here authen-
tication) accessible with a file-like interface reduces a priori the need for special inter-
faces.

3.1. Plan 9 shared key protocol

In addition to the various standard protocols supported by factotum, we use a shared
key protocol for native Plan 9 authentication. This protocol provides backward compati-
bility with older versions of the system. One reason for the new architecture is to let us
replace such protocols in the near future with more cryptographically secure ones.

P9skl1 is a shared key protocol that uses tickets much like those in the original Ker-
beros. The difference is that we've replaced the expiration time in Kerberos tickets with
a random nonce parameter and a counter. We summarize it here:

C-S: nonce ¢
. nonces,uids,domain s

—

factotum ¢
Kc{nonces,uidc,uids K,},
Ks{nonces,uidc,uids K,}

S-C
C- A: nonces,uids,domains, uid ¢,
A-C

—

C-S: Ks{nonces,uidc,uids,K,},
K,{nonces,counter}
S-C: K,{noncec,counter}

(Here K{x} indicates x encrypted with DES key K.) The first two messages exchange
nonces and server identification. After this initial exchange, the client contacts the
authentication server to obtain a pair of encrypted tickets, one encrypted with the client
key and one with the server key. The client relays the server ticket to the server. The
server believes that the ticket is new because it contains nonces and that the ticket is
from the authentication server because it is encrypted in the server key Ks. The ticket is
basically a statement from the authentication server that now uidc and uids share a
secret K,,. The authenticator K,{nonces,counter} convinces the server that the client
knows K, and thus must be uid. Similarly, authenticator K,{noncec,counter} con-
vinces the client that the server knows K, and thus must be uids. Tickets can be
reused, without contacting the authentication server again, by incrementing the counter
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before each authenticator is generated.

In the future we hope to introduce a public key version of p9skl, which would allow
authentication even when the authentication server is not available.

3.2. The authentication server

Each Plan 9 security domain has an authentication server (AS) that all users trust to keep
the complete set of shared keys. It also offers services for users and administrators to
manage the keys, create and disable accounts, and so on. It typically runs on a stan-
dalone machine with few other services. The AS comprises two services, keyfs and
authsrv.

Keyfs is a user-level file system that manages an encrypted database of user accounts.
Each account is represented by a directory containing the files key, containing the Plan
9 key for p9skl; secret for the challenge/response protocols (APOP, VNC, CHAP,
MSCHAP, CRAM); 1og for authentication outcomes; expire for an expiration time; and
status. If the expiration time passes, if the number of successive failed authentica-
tions exceeds 50, or if disabled is written to the status file, any attempt to access the
key or secret files will fail.

Authsrvis a network service that brokers shared key authentications for the protocols
p9sk1, APOP, VNC, CHAP, MSCHAP, and CRAM. Remote users can also call authsrv to
change their passwords.

The p9sk1 protocol was described in the previous section. The challenge/response pro-
tocols differ in detail but all follow the general structure:

C-S: noncec

C:. nonces,uids,domain s
A:  nonces,uids,domaing,
C
S

Ly

hOStidc, Hidc
Kc{nonces,uidc,uids K,},
Ks{nonces,uidc,uids K}
Ks{nonces,uidc,uids K,},
K,{nonces}
S-C: K,{nonce}

—

A > Av

—

The password protocol is:
A-C: KAK,}
C-A: Ky,{password ,,,password ,.,}
A- C: OK

To avoid replay attacks, the pre-encryption clear text for each of the protocols (as well
as for p9sk1) includes a tag indicating the encryption’s role in the protocol. We elided
them in these outlines.

3.3. Protocol negotiation

Rather than require particular protocols for particular services, we implemented a nego-
tiation metaprotocol, p9any, which chooses the actual authentication protocol to use.
P9any is used now by all native services on Plan 9.

The metaprotocol is simple. The callee sends a null-terminated string of the form:
v.n proto,@edomain, proto,edomain,

where n is a decimal version number, proto is the name of a protocol for which the
factotum has a key, and domain, is the name of the domain in which the key is
valid. The caller then responds
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proto@domain
indicating its choice. Finally the callee responds
OK

Any other string indicates failure. At this point the chosen protocol commences. The
final fixed-length reply is used to make it easy to delimit the I/O stream should the cho-
sen protocol require the caller rather than the callee to send the first message.

With this negotiation metaprotocol, the underlying authentication protocols used for
Plan 9 services can be changed under any application just by changing the keys known
by the factotum agents at each end.

P9any is vulnerable to man in the middle attacks to the extent that the attacker may con-
strain the possible choices by changing the stream. However, we believe this is accept-
able since the attacker cannot force either side to choose algorithms that it is unwilling
to use.

4. Library Interface to Factotum

Although programs can access factotum's services through its file system interface, it
is more common to use a C library that packages the interaction. There are a number of
routines in the library, not all of which are relevant here, but a few examples should give
their flavor.

First, consider the problem of mounting a remote file server using 9P. An earlier discus-
sion showed how the fauth and mount system calls use an authentication file, afd,
as a capability, but not how factotum manages afd. The library contains a routine,
amount (authenticated mount), that is used by most programs in preference to the raw
fauth and mount calls. Amount engages factotum to validate afd; here is the
complete code:

int

amount(int fd, char *mntpt,

int flags, char *aname)

{
int afd, ret;
AuthInfo *ai;

afd = fauth(fd, aname);
if(afd >= 0){
ai = auth_proxy(afd, amount_getkey,
"proto=p9any role=client");
if(ai != NULL)
auth_freeAI(ai);
}
ret = mount(fd, afd, mntpt,
flags, aname);
ifCafd >= 0)
close(afd);
return ret;

}

where parameter f£d is a file descriptor returned by open or dial for a new connec-
tion to a file server. The conversation with factotum occurs in the call to
auth_proxy, which specifies, as a key query, which authentication protocol to use
(here the metaprotocol p9any) and the role being played (client). Auth_proxy
will read and write the factotum files, and the authentication file descriptor afd, to
validate the user’s right to access the service. If the call is successful, any auxiliary
data, held in an AuthInfo structure, is freed. In any case, the mount is then called
with the (perhaps validated) afd. A 9P server can cause the fauth system call to fail,
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as an indication that authentication is not required to access the service.

The second argument to auth_proxy is a function, here amount_getkey, to be
called if secret information such as a password or response to a challenge is required as
part of the authentication. This function, of course, will provide this data to factotum
as a key message on the /mnt/factotum/ctl file.

Although the final argument to auth_proxy in this example is a simple string, in gen-
eral it can be a formatted-print specifier in the manner of printf, to enable the con-
struction of more elaborate key queries.

As another example, consider the Plan 9 cpu service, which exports local devices to a
shell process on a remote machine, typically to connect the local screen and keyboard to
a more powerful computer. At heart, cpu is a superset of a service called exportfs
[Pike93], which allows one machine to see an arbitrary portion of the file name space of
another machine, such as to export the network device to another machine for gateway-
ing. However, cpu is not just exportfs because it also delivers signals such as inter-
rupt and negotiates the initial environment for the remote shell.

To authenticate an instance of cpu requires factotum processes on both ends: the
local, client end running as the user on a terminal and the remote, server end running as
the host owner of the server machine. Here is schematic code for the two ends:

/* client */
int
p9auth(int fd)

{
AuthInfo *ai;

ai = auth_proxy(fd, auth_getkey,
"proto=p9any role=client");
if(ai == NULL)
return -1;

/* start cpu protocol here */

}

/* server */

int

srvp9auth(int fd, char *user)
{

AuthInfo *ai;

ai = auth_proxy(fd, NULL,
"proto=p9any role=server");
if(ai == NULL)
return -1;
/* set user id for server process */
if(auth_chuid(ai, NULL) < 0)
return -1;

/* start cpu protocol here */

}

Auth_chuid encapsulates the negotiation to change a user id using the caphash
and capuse files of the (server) kernel. Note that although the client process may ask
the user for new keys, using auth_getkey, the server machine, presumably a shared
machine with a pseudo-user for the host owner, sets the key-getting function to NULL.
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5. Secure Store

Factotum keeps its keys in volatile memory, which must somehow be initialized at
boot time. Therefore, factotum must be supplemented by a persistent store, perhaps
a floppy disk containing a key file of commands to be copied into
/mnt/factotum/ctl during bootstrap. But removable media are a nuisance to
carry and are vulnerable to theft. Keys could be stored encrypted on a shared file sys-
tem, but only if those keys are not necessary for authenticating to the file system in the
first place. Even if the keys are encrypted under a user password, a thief might well suc-
ceed with a dictionary attack. Other risks of local storage are loss of the contents
through mechanical mishap or dead batteries. Thus for convenience and safety we pro-
vide a secstore (secure store) server in the network to hold each user’s permanent
list of keys, a key file.

Secstore is a file server for encrypted data, used only during bootstrapping. It must
provide strong authentication and resistance to passive and active protocol attacks while
assuming nothing more from the client than a password. Once factotum has loaded
the key file, further encrypted or authenticated file storage can be accomplished by stan-
dard mechanisms.

The cryptographic technology that enables secstore is a form of encrypted key
exchange called PAK [Boyk00], analogous to EKE [Bell93], SRP [Wu98], or SPEKE [Jabl].
PAK was chosen because it comes with a proof of equivalence in strength to Diffie-
Hellman; subtle flaws in some earlier encrypted key exchange protocols and implemen-
tations have encouraged us to take special care. In outline, the PAK protocol is:

Cc-S: C,gXH
S-C:. S,g¥,hash(g*,C,S)
C-S: hash(g*,s,0C)

where H is a preshared secret between client C and server S. There are several variants
of PAK, all presented in papers mainly concerned with proofs of cryptographic proper-
ties. To aid implementers, we have distilled a description of the specific version we use
into an Appendix to this paper. The Plan 9 open source license provides for use of
Lucent’s encrypted key exchange patents in this context.

As a further layer of defense against password theft, we provide (within the encrypted
channel C— S) information that is validated at a RADIUS server, such as the digits from a
hardware token [RFC2138]. This provides two-factor authentication, which potentially
requires tricking two independent administrators in any attack by social engineering.

The key file stored on the server is encrypted with AES (Rijndael) using CBC with a 10-
byte initialization vector and trailing authentication padding. All this is invisible to the
user of secstore. For that matter, it is invisible to the secstore server as well; if
the AES Modes of Operation are standardized and a new encryption format designed, it
can be implemented by a client without change to the server. The secstore is delib-
erately not backed up; the user is expected to use more than one secstore or save
the key file on removable media and lock it away. The user’s password is hashed to cre-
ate the H used in the PAK protocol; a different hash of the password is used as the file
encryption key. Finally, there is a command (inside the authenticated, encrypted chan-
nel between client and secstore) to change passwords by sending a new H, for con-
sistency, the client process must at the same time fetch and re-encrypt all files.

When factotum starts, it dials the local secstore and checks whether the user has
an account. If so, it prompts for the user’s secstore password and fetches the key
file. The PAK protocol ensures mutual authentication and prevents dictionary attacks on
the password by passive wiretappers or active intermediaries. Passwords saved in the
key file can be long random strings suitable for simpler challenge/response authentica-
tion protocols. Thus the user need only remember a single, weaker password to enable
strong, ‘‘single sign on’’ authentication to unchanged legacy applications scattered
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across multiple authentication domains.

6. Transport Layer Security

Since the Plan 9 operating system is designed for use in network elements that must
withstand direct attack, unguarded by firewall or VPN, we seek to ensure that all applica-
tions use channels with appropriate mutual authentication and encryption. A principal
tool for this is TLS 1.0 [RFC2246]. (TLS 1.0 is nearly the same as SSL 3.0, and our soft-
ware is designed to interoperate with implementations of either standard.)

TLS defines a record layer protocol for message integrity and privacy through the use of
message digesting and encryption with shared secrets. We implement this service as a
kernel device, though it could be performed at slightly higher cost by invoking a sepa-
rate program. The library interface to the TLS kernel device is:

int pushtls(int fd, char *hashalg,
char *cryptalg, int isclient,
char *secret, char *dir);

Given a file descriptor, the names of message digest and encryption algorithms, and the
shared secret, pushtls returns a new file descriptor for the encrypted connection.
(The final argument dir receives the name of the directory in the TLS device that is
associated with the new connection.) The function is named by analogy with the ‘““push”
operation supported by the stream 1/O system of Research Unix and the first two edi-
tions of Plan 9. Because adding encryption is as simple as replacing one file descriptor
with another, adding encryption to a particular network service is usually trivial.

The Plan 9 shared key authentication protocols establish a shared 56-bit secret as a side
effect. Native Plan 9 network services such as cpu and exportfs use these protocols
for authentication and then invoke pushtls with the shared secret.

Above the record layer, TLS specifies a handshake protocol using public keys to estab-
lish the session secret. This protocol is widely used with HTTP and IMAP4 to provide
server authentication, though with client certificates it could provide mutual authentica-
tion. The library function

int tlsClient(int fd, TLSconn *conn)

handles the initial handshake and returns the result of pushtls. On return, it fills the
conn structure with the session ID used and the X.509 certificate presented by the
server, but makes no effort to verify the certificate. Although the original design intent
of X.509 certificates expected that they would be used with a Public Key Infrastructure,
reliable deployment has been so long delayed and problematic that we have adopted the
simpler policy of just using the X.509 certificate as a representation of the public key,
depending on a locally-administered directory of SHA1 thumbprints to allow applica-
tions to decide which public keys to trust for which purposes.

7. Related Work and Discussion

Kerberos, one of the earliest distributed authentication systems, keeps a set of authenti-
cation tickets in a temporary file called a ticket cache. The ticket cache is protected by
Unix file permissions. An environment variable containing the file name of the ticket
cache allows for different ticket caches in different simultaneous login sessions. A user
logs in by typing his or her Kerberos password. The login program uses the Kerberos
password to obtain a temporary ticket-granting ticket from the authentication server,
initializes the ticket cache with the ticket-granting ticket, and then forgets the pass-
word. Other applications can use the ticket-granting ticket to sign tickets for them-
selves on behalf of the user during the login session. The ticket cache is removed when
the user logs out [Stei88]. The ticket cache relieves the user from typing a password
every time authentication is needed.
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The secure shell SSH develops this idea further, replacing the temporary file with a
named Unix domain socket connected to a user-level program, called an agent. Once
the SSH agent is started and initialized with one or more RSA private keys, SSH clients
can employ it to perform RSA authentications on their behalf. In the absence of an
agent, SSH typically uses RSA keys read from encrypted disk files or uses passphrase-
based authentication, both of which would require prompting the user for a passphrase
whenever authentication is needed [Ylon96]. The self-certifying file system SFS uses a
similar agent [KamiOO0], not only for moderating the use of client authentication keys but
also for verifying server public keys [Mazi99].

Factotum is a logical continuation of this evolution, replacing the program-specific
SSH or SFS agents with a general agent capable of serving a wide variety of programs.
Having one agent for all programs removes the need to have one agent for each pro-
gram. It also allows the programs themselves to be protocol-agnostic, so that, for
example, one could build an SSH workalike capable of using any protocol supported by
factotum, without that program knowing anything about the protocols. Traditionally
each program needs to implement each authentication protocol for itself, an 0(n?) cod-
ing problem that factotum reduces to O(n).

Previous work on agents has concentrated on their use by clients authenticating to
servers. Looking in the other direction, Sun Microsystem’s pluggable authentication
module (PAM) is one of the earliest attempts to provide a general authentication mecha-
nism for Unix-like operating systems [Sama96]. Without a central authority like PAM,
system policy is tied up in the various implementations of network services. For exam-
ple, on a typical Unix, if a system administrator decides not to allow plaintext passwords
for authentication, the configuration files for a half dozen different servers —
rlogind, telnetd, ftpd, sshd, and so on — need to be edited. PAM solves this
problem by hiding the details of a given authentication mechanism behind a common
library interface. Directed by a system-wide configuration file, an application selects a
particular authentication mechanism by dynamically loading the appropriate shared
library. PAM is widely used on Sun’s Solaris and some Linux distributions.

Factotum achieves the same goals using the agent approach. Factotum is the only
process that needs to create capabilities, so all the network servers can run as untrusted
users (e.g., Plan 9’s none or Unix’s nobody), which greatly reduces the harm done if a
server is buggy and is compromised. In fact, if factotum were implemented on Unix
along with an analogue to the Plan 9 capability device, venerable programs like su and
login would no longer need to be installed “‘setuid root.”

Several other systems, such as Password Safe [Schn], store multiple passwords in an
encrypted file, so that the user only needs to remember one password. Our secstore
solution differs from these by placing the storage in a hardened location in the network,
so that the encrypted file is less liable to be stolen for offline dictionary attack and so
that it is available even when a user has several computers. In contrast, Microsoft’s
Passport system [Micr] keeps credentials in the network, but centralized at one
extremely-high-value target. The important feature of Passport, setting up trust rela-
tionships with e-merchants, is outside our scope. The secstore architecture is
almost identical to Perlman and Kaufman’s [Perl99] but with newer EKE technology. Like
them, we chose to defend mainly against outside attacks on secstore; if additional
defense of the files on the server itself is desired, one can use distributed techniques
[Ford0O].

We made a conscious choice of placing encryption, message integrity, and key manage-
ment at the application layer (TLS, just above layer 4) rather than at layer 3, as in IPsec.
This leads to a simpler structure for the network stack, easier integration with applica-
tions and, most important, easier network administration since we can recognize which
applications are misbehaving based on TCP port numbers. TLS does suffer (relative to
IPsec) from the possibility of forged TCP Reset, but we feel that this is adequately dealt
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with by randomized TCP sequence numbers. In contrast with other TLS libraries, Plan 9
does not require the application to change write calls to sslwrite but simply to
add a few lines of code at startup [RescO1].

8. Conclusion

Writing safe code is difficult. Stack attacks, mistakes in logic, and bugs in compilers
and operating systems can each make it possible for an attacker to subvert the intended
execution sequence of a service. If the server process has the privileges of a powerful
user, such as root on Unix, then so does the attacker. Factotum allows us to con-
strain the privileged execution to a single process whose core is a few thousand lines of
code. Verifying such a process, both through manual and automatic means, is much
easier and less error prone than requiring it of all servers.

An implementation of these ideas is in Plan 9 from Bell Labs, Fourth Edition, freely avail-
able from http://plan9.bell-labs.com/plan9.
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Appendix: Summary of the PAK protocol

Let g >2'%0 and p >2'9%2% pe primes such that p=rq+1 with ¥ not a multiple of q.
Take hDZ; such that g=h" is not 1. These parameters may be chosen by the NIST
algorithm for DSA, and are public, fixed values. The client C knows a secret 1T and com-
putes HESH] (C, )" and H™', where H, is a hash function yielding a random ele-
ment of Z,, and H~1 may be computed by gcd. (All arithmetic is modulo p.) The client
gives H~" to the server S ahead of time by a private channel. To start a new connec-
tion, the client generates a random value x, computes m=g*H, then calls the server
and sends C and m. The server checks m+0 mod p, generates random y, computes
u=gY, o=(mH '), and sends S, W, k=shal("server",C,S,m,u,0,H""). Next the
client computes o=p*, verifies k, and sends k'=shal("client",C,S,m,u,o,H").
The server then verifies k' and both sides begin using session key
K=shal("session",C,S,m,u,0,H™"). In the published version of PAK, the server
name S is included in the initial hash H, but doing so is inconvenient in our application,
as the server may be known by various equivalent names.

MacKenzie has shown [Mack] that the equivalence proof [Boyk00O] can be adapted to
cover our version.



