
Acid: A Debugger Built From A Language

Phil Winterbottom
philw@plan9.bell-labs.com

ABSTRACT

Acid is an unusual source-level symbolic debugger for Plan 9. It is
implemented as a language interpreter with specialized primitives that
provide debugger support. Programs written in the language manipulate
one or more target processes; variables in the language represent the
symbols, state, and resources of those processes. This structure allows
complex interaction between the debugger and the target program and
provides a convenient method of parameterizing differences between
machine architectures. Although some effort is required to learn the
debugging language, the richness and flexibility of the debugging envi­
ronment encourages new ways of reasoning about the way programs run
and the conditions under which they fail.

1. Introduction

The size and complexity of programs have increased in proportion to processor
speed and memory but the interface between debugger and programmer has changed
little. Graphical user interfaces have eased some of the tedious aspects of the interac­
tion. A graphical interface is a convenient means for navigating through source and data
structures but provides little benefit for process control. The introduction of a new con­
current language, Alef [Win93], emphasized the inadequacies of the existing Plan 9
[Pike90] debugger db, a distant relative of adb, and made it clear that a new debugger
was required.

Current debuggers like dbx, sdb, and gdb are limited to answering only the ques­
tions their authors envisage. As a result, they supply a plethora of specialized com­
mands, each attempting to anticipate a specific question a user may ask. When a
debugging situation arises that is beyond the scope of the command set, the tool is use­
less. Further, it is often tedious or impossible to reproduce an anomalous state of the
program, especially when the state is embedded in the program�s data structures.

Acid applies some ideas found in CAD software used for hardware test and simula­
tion. It is based on the notion that the state and resources of a program are best repre­
sented and manipulated by a language. The state and resources, such as memory, regis­
ters, variables, type information and source code are represented by variables in the lan­
guage. Expressions provide a computation mechanism and control statements allow
repetitive or selective interpretation based on the result of expression evaluation. The
heart of the Acid debugger is an interpreter for a small typeless language whose opera­
tors mirror the operations of C and Alef, which in turn correspond well to the basic oper­
ations of the machine. The interpreter itself knows nothing of the underlying hardware;
it deals with the program state and resources in the abstract. Fundamental routines to
control processes, read files, and interface to the system are implemented as builtin

Originally appeared in Proc. of the Winter 1994 USENIX Conf., pp. 211-222, San Francisco, CA

­ 2 ­

functions available to the interpreter. The actual debugger functionality is coded in
Acid; commands are implemented as Acid functions.

This language-based approach has several advantages. Most importantly, pro­
grams written in Acid, including most of the debugger itself, are inherently portable.
Furthermore, Acid avoids the limitations other debuggers impose when debugging par­
allel programs. Instead of embedding a fixed process model in the debugger, Acid
allows the programmer to adapt the debugger to handle an arbitrary process partition­
ing or program structure. The ability to interact dynamically with an executing process
provides clear advantages over debuggers constrained to probe a static image. Finally,
the Acid language is a powerful vehicle for expressing assertions about logic, process
state, and the contents of data structures. When combined with dynamic interaction it
allows a limited form of automated program verification without requiring modification
or recompilation of the source code. The language is also an excellent vehicle for pre­
serving a test suite for later regression testing.

The debugger may be customized by its users; standard functions may be modified
or extended to suit a particular application or preference. For example, the kernel
developers in our group require a command set supporting assembler-level debugging
while the application programmers prefer source-level functionality. Although the
default library is biased toward assembler-level debugging, it is easily modified to pro­
vide a convenient source-level interface. The debugger itself does not change; the user
combines primitives and existing Acid functions in different ways to implement the
desired interface.

2. Related Work

DUEL [Gol93], an extension to gdb [Stal91], proposes using a high level expression
evaluator to solve some of these problems. The evaluator provides iterators to loop over
data structures and conditionals to control evaluation of expressions. The author shows
that complex state queries can be formulated by combining concise expressions but this
only addresses part of the problem. A program is a dynamic entity; questions asked
when the program is in a static state are meaningful only after the program has been
�caught� in that state. The framework for manipulating the program is still as primitive
as the underlying debugger. While DUEL provides a means to probe data structures it
entirely neglects the most beneficial aspect of debugging languages: the ability to con­
trol processes. Acid is structured around a thread of control that passes between the
interpreter and the target program.

The NeD debugger [May92] is a set of extensions to TCL [Ous90] that provide
debugging primitives. The resulting language, NeDtcl, is used to implement a portable
interface between a conventional debugger, pdb [May90], and a server that executes
NeDtcl programs operating on the target program. Execution of the NeDtcl programs
implements the debugging primitives that pdb expects. NeD is targeted at multi-
process debugging across a network, and proves the flexibility of a language as a means
of communication between debugging tools. Whereas NeD provides an interface
between a conventional debugger and the process it debugs, Acid is the debugger itself.
While NeD has some of the ideas found in Acid it is targeted toward a different purpose.
Acid seeks to integrate the manipulation of a program�s resources into the debugger
while NeD provides a flexible interconnect between components of the debugging envi­
ronment. The choice of TCL is appropriate for its use in NeD but is not suitable for Acid.
Acid relies on the coupling of the type system with expression evaluation, which are the
root of its design, to provide the debugging primitives.

Dalek [Ols90] is an event based language extension to gdb. State transitions in the
target program cause events to be queued for processing by the debugging language.

­ 3 ­

Acid has many of the advantages of same process or local agent debuggers, like
Parasight [Aral], without the need for dynamic linking or shared memory. Acid improves
on the ideas of these other systems by completely integrating all aspects of the debug­
ging process into the language environment. Of particular importance is the relationship
between Acid variables, program symbols, source code, registers and type information.
This integration is made possible by the design of the Acid language.

Interpreted languages such as Lisp and Smalltalk are able to provide richer debug­
ging environments through more complete information than their compiled counter­
parts. Acid is a means to gather and represent similar information about compiled pro­
grams through cooperation with the compilation tools and library implementers.

3. Acid the Language

Acid is a small interpreted language targeted to its debugging task. It focuses on
representing program state and addressing data rather than expressing complex com­
putations. Program state is addressable from an Acid program. In addition to parsing
and executing expressions and providing an architecture-independent interface to the
target process, the interpreter supplies a mark-and-scan garbage collector to manage
storage.

Every Acid session begins with the loading of the Acid libraries. These libraries
contain functions, written in Acid, that provide a standard debugging environment
including breakpoint management, stepping by instruction or statement, stack tracing,
and access to variables, memory, and registers. The library contains 600 lines of Acid
code and provides functionality similar to dbx. Following the loading of the system
library, Acid loads user-specified libraries; this load sequence allows the user to aug­
ment or override the standard commands to customize the debugging environment.
When all libraries are loaded, Acid issues an interactive prompt and begins evaluating
expressions entered by the user. The Acid �commands� are actually invocations of buil­
tin primitives or previously defined Acid functions. Acid evaluates each expression as it
is entered and prints the result.

4. Types and Variables

Acid variables are of four basic types: integer, string, float, and list. The type of a
variable is inferred by the type of the right-hand side of an assignment expression.
Many of the operators can be applied to more than one type; for these operators the
action of the operator is determined by the type of its operands. For example, the +
operator adds integer and float operands, and concatenates string and list operands.
Lists are the only complex type in Acid; there are no arrays, structures or pointers. Oper­
ators provide head, tail, append and delete operations. Lists can also be
indexed like arrays.

Acid has two levels of scope: global and local. Function parameters and variables
declared in a function body using the local keyword are created at entry to the func­
tion and exist for the lifetime of a function. Global variables are created by assignment
and need not be declared. All variables and functions in the program being debugged
are entered in the Acid symbol table as global variables during Acid initialization. Con­
flicting variable names are resolved by prefixing enough �$� characters to make them
unique. Syntactically, Acid variables and target program symbols are referenced identi­
cally. However, the variables are managed differently in the Acid symbol table and the
user must be aware of this distinction. The value of an Acid variable is stored in the
symbol table; a reference returns the value. The symbol table entry for a variable or
function in the target program contains the address of that symbol in the image of the
program. Thus, the value of a program variable is accessed by indirect reference
through the Acid variable that has the same name; the value of an Acid variable is the
address of the corresponding program variable.

­ 4 ­

5. Control Flow

The while and loop statements implement looping. The former is similar to the
same statement in C. The latter evaluates starting and ending expressions yielding inte­
gers and iterates while an incrementing loop index is within the bounds of those expres­
sions.

acid: i = 0; loop 1,5 do print(i=i+1)
0x00000001
0x00000002
0x00000003
0x00000004
0x00000005
acid:

The traditional if-then-else statement implements conditional execution.

6. Addressing

Two indirection operators allow Acid to access values in the program being
debugged. The * operator fetches a value from the memory image of an executing pro­
cess; the @ operator fetches a value from the text file of the process. When either oper­
ator appears on the left side of an assignment, the value is written rather than read.

The indirection operator must know the size of the object referenced by a variable.
The Plan 9 compilers neglect to include this information in the program symbol table, so
Acid cannot derive this information implicitly. Instead Acid variables have formats. The
format is a code letter specifying the printing style and the effect of some of the opera­
tors on that variable. The indirection operators look at the format code to determine the
number of bytes to read or write. The format codes are derived from the format letters
used by db. By default, symbol table variables and numeric constants are assigned the
format code 'X' which specifies 32-bit hexadecimal. Printing such a variable yields
output of the form 0x00123456. An indirect reference through the variable fetches
32 bits of data at the address indicated by the variable. Other formats specify various
data types, for example i an instruction, D a signed 32 bit decimal, s a null-terminated
string. The fmt function allows the user to change the format code of a variable to con­
trol the printing format and operator side effects. This function evaluates the expres­
sion supplied as the first argument, attaches the format code supplied as the second
argument to the result and returns that value. If the result is assigned to a variable, the
new format code applies to that variable. For convenience, Acid provides the \ operator
as a shorthand infix form of fmt. For example:

acid: x=10
acid: x // print x in hex
0x0000000a
acid: x = fmt(x, 'D') // make x type decimal
acid: print(x, fmt(x, 'X'), x\X) // print x in decimal & hex
10 0x0000000a 0x0000000a
acid: x // print x in decimal
10
acid: x\o // print x in octal
000000000012

The ++ and -- operators increment or decrement a variable by an amount determined
by its format code. Some formats imply a non-fixed size. For example, the i format
code disassembles an instruction into a string. On a 68020, which has variable length
instructions:

­ 5 ­

acid: p=main\i // p=addr(main), type INST
acid: loop 1,5 do print(p\X, @p++) // disassemble 5 instr's
0x0000222e LEA 0xffffe948(A7),A7
0x00002232 MΧVL s+0x4(A7),A2
0x00002236 PEA 0x2f($0)
0x0000223a MΧVL A2,-(A7)
0x0000223c BSR utfrrune
acid:

Here, main is the address of the function of the same name in the program under test.
The loop retrieves the five instructions beginning at that address and then prints the
address and the assembly language representation of each. Notice that the stride of the
increment operator varies with the size of the instruction: the MΧVL at 0x0000223a is
a two byte instruction while all others are four bytes long.

Registers are treated as normal program variables referenced by their symbolic
assembler language names. When a process stops, the register set is saved by the ker­
nel at a known virtual address in the process memory map. The Acid variables associ­
ated with the registers point to the saved values and the * indirection operator can then
be used to read and write the register set. Since the registers are accessed via Acid vari­
ables they may be used in arbitrary expressions.

acid: PC // addr of saved PC
0xc0000f60
acid: *PC
0x0000623c // contents of PC
acid: *PC\a
main
acid: *R1=10 // modify R1
acid: asm(*PC+4) // disassemble @ PC+4
main+0x4 0x00006240 MΧVW R31,0x0(R29)
main+0x8 0x00006244 MΧVW $setR30(SB),R30
main+0x10 0x0000624c MΧVW R1,_clock(SB)

Here, the saved PC is stored at address 0xc0000f60; its current content is
0x0000623c. The �a� format code converts this value to a string specifying the
address as an offset beyond the nearest symbol. After setting the value of register 1,
the example uses the asm command to disassemble a short section of code beginning
at four bytes beyond the current value of the PC.

7. Process Interface

A program executing under Acid is monitored through the proc file system inter­
face provided by Plan 9. Textual messages written to the ctl file control the execution
of the process. For example writing waitstop to the control file causes the write to
block until the target process enters the kernel and is stopped. When the process is
stopped the write completes. The startstop message starts the target process and
then does a waitstop action. Synchronization between the debugger and the target
process is determined by the actions of the various messages. Some operate asyn­
chronously to the target process and always complete immediately, others block until
the action completes. The asynchronous messages allow Acid to control several pro­
cesses simultaneously.

The interpreter has builtin functions named after each of the control messages.
The functions take a process id as argument. Any time a control message causes the
program to execute instructions the interpreter performs two actions when the control
operation has completed. The Acid variables pointing at the register set are fixed up to
point at the saved registers, and then the user defined function stopped is executed.
The stopped function may print the current address, line of source or instruction and
return to interactive mode. Alternatively it may traverse a complex data structure, gather

­ 6 ­

statistics and then set the program running again.

Several Acid variables are maintained by the debugger rather than the programmer.
These variables allow generic Acid code to deal with the current process, architecture
specifics or the symbol table. The variable pid is the process id of the current process
Acid is debugging. The variable symbols contains a list of lists where each sublist
contains the symbol name, its type and the value of the symbol. The variable
registers contains a list of the machine-specific register names. Global symbols in
the target program can be referenced directly by name from Acid. Local variables are
referenced using the colon operator as function:variable.

8. Source Level Debugging

Acid provides several builtin functions to manipulate source code. The file func­
tion reads a text file, inserting each line into a list. The pcfile and pcline func­
tions each take an address as an argument. The first returns a string containing the
name of the source file and the second returns an integer containing the line number of
the source line containing the instruction at the address.

acid: pcfile(main) // file containing main
main.c
acid: pcline(main) // line # of main in source
11
acid: file(pcfile(main))[pcline(main)] // print that line
main(int argc, char *argv[])
acid: src(*PC) // print statements nearby
9
10 void
>11 main(int argc, char *argv[])
12 {
13 int a;

In this example, the three primitives are combined in an expression to print a line of
source code associated with an address. The src function prints a few lines of source
around the address supplied as its argument. A companion routine, Bsrc, communi­
cates with the external editor sam. Given an address, it loads the corresponding source
file into the editor and highlights the line containing the address. This simple interface
is easily extended to more complex functions. For example, the step function can
select the current file and line in the editor each time the target program stops, giving
the user a visual trace of the execution path of the program. A more complete interface
allowing two way communication between Acid and the acme user interface [Pike93] is
under construction. A filter between the debugger and the user interface provides inter­
pretation of results from both sides of the interface. This allows the programming envi­
ronment to interact with the debugger and vice-versa, a capability missing from the
sam interface. The src and Bsrc functions are both written in Acid code using the
file and line primitives. Acid provides library functions to step through source level
statements and functions. Furthermore, addresses in Acid expressions can be specified
by source file and line. Source code is manipulated in the Acid list data type.

9. The Acid Library

The following examples define some useful commands and illustrate the interac­
tion of the debugger and the interpreter.

­ 7 ­

defn bpset(addr) // set breakpoint
{

if match(addr, bplist) >= 0 then
print("bkpoint already set:", addr\a, "\n");

else {
*fmt(addr, bpfmt) = bpinst; // plant it
bplist = append bplist, addr; // add to list

}
}

The bpset function plants a break point in memory. The function starts by using the
match builtin to search the breakpoint list to determine if a breakpoint is already set at
the address. The indirection operator, controlled by the format code returned by the
fmt primitive, is used to plant the breakpoint in memory. The variables bpfmt and
bpinst are Acid global variables containing the format code specifying the size of the
breakpoint instruction and the breakpoint instruction itself. These variables are set by
architecture-dependent library code when the debugger first attaches to the executing
image. Finally the address of the breakpoint is appended to the breakpoint list,
bplist.

defn step() // single step
{

local lst, lpl, addr, bput;

bput = 0; // sitting on bkpoint
if match(*PC, bplist) >= 0 then {

bput = fmt(*PC, bpfmt); // save current addr
*bput = @bput; // replace it

}

lst = follow(*PC); // get follow set

lpl = lst;
while lpl do { // place breakpoints

*(head lpl) = bpinst;
lpl = tail lpl;

}

startstop(pid); // do the step

while lst do { // remove breakpoints
addr = fmt(head lst, bpfmt);
*addr = @addr; // replace instr.
lst = tail lst;

}
if bput != 0 then

*bput = bpinst; // restore breakpoint
}

The step function executes a single assembler instruction. If the PC is sitting on a
breakpoint, the address and size of the breakpoint are saved. The breakpoint instruc­
tion is then removed using the @ operator to fetch bpfmt bytes from the text file and
to place it into the memory of the executing process using the * operator. The
follow function is an Acid builtin which returns a follow-set: a list of instruction
addresses which could be executed next. If the instruction stored at the PC is a branch
instruction, the list contains the addresses of the next instruction and the branch desti­
nation; otherwise, it contains only the address of the next instruction. The follow-set is
then used to replace each possible following instruction with a breakpoint instruction.
The original instructions need not be saved; they remain in their unaltered state in the

­ 8 ­

text file. The startstop builtin writes the �startstop� message to the proc control file
for the process named pid. The target process executes until some condition causes it
to enter the kernel, in this case, the execution of a breakpoint. When the process
blocks, the debugger regains control and invokes the Acid library function stopped
which reports the address and cause of the blockage. The startstop function com­
pletes and returns to the step function where the follow-set is used to replace the
breakpoints placed earlier. Finally, if the address of the original PC contained a break­
point, it is replaced.

Notice that this approach to process control is inherently portable; the Acid code is
shared by the debuggers for all architectures. Acid variables and builtin functions pro­
vide a transparent interface to architecture-dependent values and functions. Here the
breakpoint value and format are referenced through Acid variables and the follow
primitive masks the differences in the underlying instruction set.

The next function, similar to the dbx command of the same name, is a simpler
example. This function steps through a single source statement but steps over function
calls.

defn next()
{

local sp, bound;

sp = *SP; // save starting SP
bound = fnbound(*PC); // begin & end of fn.
stmnt(); // step 1 statement
pc = *PC;
if pc >= bound[0] && pc < bound[1] then

return {};

while (pc<bound[0] || pc>bound[1]) && sp>=*SP do {
step();
pc = *PC;

}
src(*PC);

}

The next function starts by saving the current stack pointer in a local variable. It then
uses the Acid library function fnbound to return the addresses of the first and last
instructions in the current function in a list. The stmnt function executes a single
source statement and then uses src to print a few lines of source around the new PC.
If the new value of the PC remains in the current function, next returns. When the
executed statement is a function call or a return from a function, the new value of the
PC is outside the bounds calculated by fnbound and the test of the while loop is
evaluated. If the statement was a return, the new value of the stack pointer is greater
than the original value and the loop completes without execution. Otherwise, the loop
is entered and instructions are continually executed until the value of the PC is between
the bounds calculated earlier. At that point, execution ceases and a few lines of source
in the vicinity of the PC are printed.

Acid provides concise and elegant expression for control and manipulation of tar­
get programs. These examples demonstrate how a few well-chosen primitives can be
combined to create a rich debugging environment.

10. Dealing With Multiple Architectures

A single binary of Acid may be used to debug a program running on any of the five
processor architectures supported by Plan 9. For example, Plan 9 allows a user on a
MIPS to import the proc file system from an i486-based PC and remotely debug a pro­
gram executing on that processor.

­ 9 ­

Two levels of abstraction provide this architecture independence. On the lowest
level, a Plan 9 library supplies functions to decode the file header of the program being
debugged and select a table of system parameters and a jump vector of architecture-
dependent functions based on the magic number. Among these functions are byte-
order-independent access to memory and text files, stack manipulation, disassembly,
and floating point number interpretation. The second level of abstraction is supplied by
Acid. It consists of primitives and approximately 200 lines of architecture-dependent
Acid library code that interface the interpreter to the architecture-dependent library.
This layer performs functions such as mapping register names to memory locations,
supplying breakpoint values and sizes, and converting processor specific data to Acid
data types. An example of the latter is the stack trace function strace, which uses the
stack traversal functions in the architecture-dependent library to construct a list of lists
describing the context of a process. The first level of list selects each function in the
trace; subordinate lists contain the names and values of parameters and local variables
of the functions. Acid commands and library functions that manipulate and display pro­
cess state information operate on the list representation and are independent of the
underlying architecture.

11. Alef Runtime

Alef is a concurrent programming language, designed specifically for systems pro­
gramming, which supports both shared variable and message passing paradigms. Alef
borrows the C expression syntax but implements a substantially different type system.
The language provides a rich set of exception handling, process management, and syn­
chronization primitives, which rely on a runtime system. Alef program bugs are often
deadlocks, synchronization failures, or non-termination caused by locks being held
incorrectly. In such cases, a process stalls deep in the runtime code and it is clearly
unreasonable to expect a programmer using the language to understand the detailed
internal semantics of the runtime support functions.

Instead, there is an Alef support library, coded in Acid, that allows the programmer
to interpret the program state in terms of Alef operations. Consider the example of a
multi-process program stalling because of improper synchronization. A stack trace of
the program indicates that it is waiting for an event in some obscure Alef runtime syn­
chronization function. The function itself is irrelevant to the programmer; of greater
importance is the identity of the unfulfilled event. Commands in the Alef support library
decode the runtime data structures and program state to report the cause of the block­
age in terms of the high-level operations available to the Alef programmer. Here, the
Acid language acts as a communications medium between Alef implementer and Alef
user.

12. Parallel Debugging

The central issue in parallel debugging is how the debugger is multiplexed
between the processes comprising the program. Acid has no intrinsic model of process
partitioning; it only assumes that parallel programs share a symbol table, though they
need not share memory. The setproc primitive attaches the debugger to a running
process associated with the process ID supplied as its argument and assigns that value
to the global variable pid, thereby allowing simple rotation among a group of pro­
cesses. Further, the stack trace primitive is driven by parameters specifying a unique
process context, so it is possible to examine the state of cooperating processes without
switching the debugger focus from the process of interest. Since Acid is inherently
extensible and capable of dynamic interaction with subordinate processes, the program­
mer can define Acid commands to detect and control complex interactions between pro­
cesses. In short, the programmer is free to specify how the debugger reacts to events
generated in specific threads of the program.

­ 10 ­

The support for parallel debugging in Acid depends on a crucial kernel modifica­
tion: when the text segment of a program is written (usually to place a breakpoint), the
segment is cloned to prevent other threads from encountering the breakpoint. Although
this incurs a slight performance penalty, it is of little importance while debugging.

13. Communication Between Tools

The Plan 9 Alef and C compilers do not embed detailed type information in the
symbol table of an executable file. However, they do accept a command line option
causing them to emit descriptions of complex data types (e.g., aggregates and abstract
data types) to an auxiliary file. The vehicle for expressing this information is Acid
source code. When an Acid debugging session is subsequently started, that file is
loaded with the other Acid libraries.

For each complex object in the program the compiler generates three pieces of
Acid code. The first is a table describing the size and offset of each member of the
complex data type. Following is an Acid function, named the same as the object, that
formats and prints each member. Finally, Acid declarations associate the Alef or C pro­
gram variables of a type with the functions to print them. The three forms of declara­
tion are shown in the following example:

struct Bitmap {
Rectangle 0 r;
Rectangle 16 clipr;
'D' 32 ldepth;
'D' 36 id;
'X' 40 cache;

};

defn
Bitmap(addr) {

complex Bitmap addr;
print("Rectangle r {\n");
Rectangle(addr.r);
print("}\n");
print("Rectangle clipr {\n");
Rectangle(addr.clipr);
print("}\n");
print(" ldepth ", addr.ldepth, "\n");
print(" id ", addr.id, "\n");
print(" cache ", addr.cache, "\n");

};

complex Bitmap darkgrey;
complex Bitmap Window_settag:b;

The struct declaration specifies decoding instructions for the complex type named
Bitmap. Although the syntax is superficially similar to a C structure declaration, the
semantics differ markedly: the C declaration specifies a layout, while the Acid declara­
tion tells how to decode it. The declaration specifies a type, an offset, and name for
each member of the complex object. The type is either the name of another complex
declaration, for example, Rectangle, or a format code. The offset is the number of
bytes from the start of the object to the member and the name is the member�s name in
the Alef or C declaration. This type description is a close match for C and Alef, but is
simple enough to be language independent.

The Bitmap function expects the address of a Bitmap as its only argument. It
uses the decoding information contained in the Bitmap structure declaration to
extract, format, and print the value of each member of the complex object pointed to by
the argument. The Alef compiler emits code to call other Acid functions where a

­ 11 ­

member is another complex type; here, Bitmap calls Rectangle to print its con­
tents.

The complex declarations associate Alef variables with complex types. In the
example, darkgrey is the name of a global variable of type Bitmap in the program
being debugged. Whenever the name darkgrey is evaluated by Acid, it automatically
calls the Bitmap function with the address of darkgrey as the argument. The sec­
ond complex declaration associates a local variable or parameter named b in function
Window_settag with the Bitmap complex data type.

Acid borrows the C operators . and -> to access the decoding parameters of a
member of a complex type. Although this representation is sufficiently general for
describing the decoding of both C and Alef complex data types, it may prove too restric­
tive for target languages with more complicated type systems. Further, the assumption
that the compiler can select the proper Acid format code for each basic type in the lan­
guage is somewhat naive. For example, when a member of a complex type is a pointer,
it is assigned a hexadecimal type code; integer members are always assigned a decimal
type code. This heuristic proves inaccurate when an integer field is a bit mask or set of
bit flags which are more appropriately displayed in hexadecimal or octal.

14. Code Verification

Acid�s ability to interact dynamically with an executing program allows passive test
and verification of the target program. For example, a common concern is leak detec­
tion in programs using malloc. Of interest are two items: finding memory that was
allocated but never freed and detecting bad pointers passed to free. An auxiliary Acid
library contains Acid functions to monitor the execution of a program and detect these
faults, either as they happen or in the automated post-mortem analysis of the memory
arena. In the following example, the sort command is run under the control of the
Acid memory leak library.

helix% acid -l malloc /bin/sort
/bin/sort: mips plan 9 executable
/lib/acid/port
/lib/acid/mips
/lib/acid/malloc
acid: go()
now
is
the
time
<ctrl-d>
is
now
the
time
27680 : breakpoint _exits+0x4 MΧVW $0x8,R1
acid:

The go command creates a process and plants breakpoints at the entry to malloc and
free. The program is then started and continues until it exits or stops. If the reason
for stopping is anything other than the breakpoints in malloc and free, Acid prints
the usual status information and returns to the interactive prompt.

When the process stops on entering malloc, the debugger must capture and save
the address that malloc will return. After saving a stack trace so the calling routine
can be identified, it places a breakpoint at the return address and restarts the program.
When malloc returns, the breakpoint stops the program, allowing the debugger to
grab the address of the new memory block from the return register. The address and
stack trace are added to the list of outstanding memory blocks, the breakpoint is

­ 12 ­

removed from the return point, and the process is restarted.

When the process stops at the beginning of free, the memory address supplied
as the argument is compared to the list of outstanding memory blocks. If it is not found
an error message and a stack trace of the call is reported; otherwise, the address is
deleted from the list.

When the program exits, the list of outstanding memory blocks contains the
addresses of all blocks that were allocated but never freed. The leak library function
traverses the list producing a report describing the allocated blocks.

acid: leak()
Lost a total of 524288 bytes from:

malloc() malloc.c:32 called from dofile+0xe8 sort.c:217
dofile() sort.c:190 called from main+0xac sort.c:161
main() sort.c:128 called from _main+0x20 main9.s:10

Lost a total of 64 bytes from:
malloc() malloc.c:32 called from newline+0xfc sort.c:280
newline() sort.c:248 called from dofile+0x110 sort.c:222
dofile() sort.c:190 called from main+0xac sort.c:161
main() sort.c:128 called from _main+0x20 main9.s:10

Lost a total of 64 bytes from:
malloc() malloc.c:32 called from realloc+0x14 malloc.c:129
realloc() malloc.c:123 called from bldkey+0x358 sort.c:1388
buildkey() sort.c:1345 called from newline+0x150 sort.c:285
newline() sort.c:248 called from dofile+0x110 sort.c:222
dofile() sort.c:190 called from main+0xac sort.c:161
main() sort.c:128 called from _main+0x20 main9.s:10

acid: refs()
data...bss...stack...
acid: leak()
acid:

The presence of a block in the allocation list does not imply it is there because of a leak;
for instance, it may have been in use when the program terminated. The refs()
library function scans the data, bss, and stack segments of the process looking for
pointers into the allocated blocks. When one is found, the block is deleted from the out­
standing block list. The leak function is used again to report the blocks remaining
allocated and unreferenced. This strategy proves effective in detecting disconnected
(but non-circular) data structures.

The leak detection process is entirely passive. The program is not specially com­
piled and the source code is not required. As with the Acid support functions for the
Alef runtime environment, the author of the library routines has encapsulated the func­
tionality of the library interface in Acid code. Any programmer may then check a
program�s use of the library routines without knowledge of either implementation. The
performance impact of running leak detection is great (about 10 times slower), but it
has not prevented interactive programs like sam and the 8½ window system from being
tested.

15. Code Coverage

Another common component of software test uses coverage analysis. The purpose
of the test is to determine which paths through the code have not been executed while
running the test suite. This is usually performed by a combination of compiler support
and a reporting tool run on the output generated by statements compiled into the pro­
gram. The compiler emits code that logs the progress of the program as it executes
basic blocks and writes the results to a file. The file is then processed by the reporting
tool to determine which basic blocks have not been executed.

­ 13 ­

Acid can perform the same function in a language independent manner without
modifying the source, object or binary of the program. The following example shows ls
being run under the control of the Acid coverage library.

philw-helix% acid -l coverage /bin/ls
/bin/ls: mips plan 9 executable
/lib/acid/port
/lib/acid/mips
/lib/acid/coverage
acid: coverage()
acid
newstime
profile
tel
wintool
2: (error) msg: pid=11419 startstop: process exited
acid: analyse(ls)
ls.c:102,105

102: return 1;
103: }
104: if(db[0].qid.path&CHDIR && dflag==0){
105: output();

ls.c:122,126
122: memmove(dirbuf+ndir, db, sizeof(Dir));
123: dirbuf[ndir].prefix = 0;
124: p = utfrrune(s, '/');
125: if(p){
126: dirbuf[ndir].prefix = s;

The coverage function begins by looping through the text segment placing break­
points at the entry to each basic block. The start of each basic block is found using the
Acid builtin function follow. If the list generated by follow contains more than one
element, then the addresses mark the start of basic blocks. A breakpoint is placed at
each address to detect entry into the block. If the result of follow is a single address
then no action is taken, and the next address is considered. Acid maintains a list of
breakpoints already in place and avoids placing duplicates (an address may be the desti­
nation of several branches).

After placing the breakpoints the program is set running. Each time a breakpoint
is encountered Acid deletes the address from the breakpoint list, removes the break­
point from memory and then restarts the program. At any instant the breakpoint list
contains the addresses of basic blocks which have not been executed. The analyse
function reports the lines of source code bounded by basic blocks whose addresses are
have not been deleted from the breakpoint list. These are the basic blocks which have
not been executed. Program performance is almost unaffected since each breakpoint is
executed only once and then removed.

The library contains a total of 128 lines of Acid code. An obvious extension of this
algorithm could be used to provide basic block profiling.

16. Conclusion

Acid has two areas of weakness. As with other language-based tools like awk, a
programmer must learn yet another language to step beyond the normal debugging
functions and use the full power of the debugger. Second, the command line interface
supplied by the yacc parser is inordinately clumsy. Part of the problem relates directly
to the use of yacc and could be circumvented with a custom parser. However, structural
problems would remain: Acid often requires too much typing to execute a simple com­
mand. A debugger should prostitute itself to its users, doing whatever is wanted with a
minimum of encouragement; commands should be concise and obvious. The language

­ 14 ­

interface is more consistent than an ad hoc command interface but is clumsy to use.
Most of these problems are addressed by an Acme interface which is under construc­
tion. This should provide the best of both worlds: graphical debugging and access to the
underlying acid language when required.

The name space clash between Acid variables, keywords, program variables, and
functions is unavoidable. Although it rarely affects a debugging session, it is annoying
when it happens and is sometimes difficult to circumvent. The current renaming
scheme is too crude; the new names are too hard to remember.

Acid has proved to be a powerful tool whose applications have exceeded expecta­
tions. Of its strengths, portability, extensibility and parallel debugging support were by
design and provide the expected utility. In retrospect, its use as a tool for code test and
verification and as a medium for communicating type information and encapsulating
interfaces has provided unanticipated benefits and altered our view of the debugging
process.

17. Acknowledgments

Bob Flandrena was the first user and helped prepare the paper. Rob Pike endured
three buggy Alef compilers and a new debugger in a single sitting.

18. References

[Pike90] R. Pike, D. Presotto, K. Thompson, H. Trickey, ��Plan 9 from Bell Labs��, UKUUG
Proc. of the Summer 1990 Conf., London, England, 1990, reprinted, in a different form,
in this volume.

[Gol93] M. Golan, D. Hanson, ��DUEL -- A Very High-Level Debugging Language��,
USENIX Proc. of the Winter 1993 Conf., San Diego, CA, 1993.

[Lin90] M. A. Linton, ��The Evolution of DBX��, USENIX Proc. of the Summer 1990 Conf.,
Anaheim, CA, 1990.

[Stal91] R. M. Stallman, R. H. Pesch, ��Using GDB: A guide to the GNU source level debug­
ger��, Technical Report, Free Software Foundation, Cambridge, MA, 1991.

[Win93] P. Winterbottom, ��Alef reference Manual��, this volume.

[Pike93] Rob Pike, ��Acme: A User Interface for Programmers��, USENIX Proc. of the
Winter 1994 Conf., San Francisco, CA, reprinted in this volume.

[Ols90] Ronald A. Olsson, Richard H. Crawford, and W. Wilson Ho, ��Dalek: A GNU,
improved programmable debugger��, USENIX Proc. of the Summer 1990 Conf., Anaheim,
CA.

[May92] Paul Maybee, ��NeD: The Network Extensible Debugger�� USENIX Proc. of the
Summer 1992 Conf., San Antonio, TX.

[Aral] Ziya Aral, Ilya Gertner, and Greg Schaffer, ��Efficient debugging primitives for mul­
tiprocessors��, Proceedings of the Third International Conference on Architectural
Support for Programming Languages and Χperating Systems, SIGPLAN notices Nr. 22,
May 1989.

