Rio: Design of a Concurrent Window
System

Rob Pike
Computing Sciences Research Center
Bell Labs
Lucent Technologies
rob@plan9.bell-labs.com

February 4, 2000

History

Topic: the external and, particularly, internal design of Rio,
the (new) Plan 9 window system.

Descendant of 8v%:

Pike, Rob, “8Y, the Plan 9 Window SystenPtoceedings
of the Summer 1991 USENIX ConferemNashville, 1991,
pp. 257-265.

8Y2 originally written in C, using processes and hand-built
coroutines based @etjimp andlongjmp (an interesting
exercise).

For Brazil, rewritten from scratch in Alef in 1995, and
converted to true threads and procs.

Converted (in an afternoon) in 1999 to use the thread library.

Historical note: although Alef was a fruitful language, it
proved too difficult to maintain a variant language across
multiple architectures, so we took what we learned from it and
built the thread library for C.

Overall Design

Window system provides three things beyond the obvious:
System interface (to access underlying hardware)
Program interface (to manipulate windows)

User interface (mouse, keyboard, menus...)

Then it must multiplex all these things in parallel for multiple
clients.

Rio is unusual among window systems (although not among
Plan 9 services) because it is implementedfés server

OP: the Plan 9 File Server Protocol

(Almost) Everything in Plan 9 is a file server or at least
represented as one:

Processes (for debugging)
Environment variables
Console

Graphics

Network

Client attaches to a server.
Client requests, server responds.

Requests:
Attach
Walk, Open, Read, Write, Close, Create
Remove, Stat

Can be provided over any reliable channel: TCP/IP, pipe, ...

Name space

A name spaces the set of files accessible to a process.

In Unix, the name space is the same for all processes. In Plan
9, it is controllable; each process can have a private name
space. In practice, name spaces are shared by a set of related
processes called a group.

User profile builds name space starting frormnd mounting
(attaching) services.

Recall all services, including basic devices, are file servers.

That's Plan 9, in a nutshell.

Example devices

Process:
/proc/1/...

/proc/27/ctl
/proc/27/mem
/proc/27/note
/proc/27/notepg
/proc/27/proc
/proc/27/status
/proc/27/text

Console:

/dev/cons
/dev/time
/dev/cputime
/dev/pid

(All textual)

Example devices (cont’d.)

Network:

/net/il/clone
/net/il/stats
Inet/il/29/ctl
Inet/il/29/data
Inet/il/29/err
Inet/il/29/listen
/net/il/29/local
Inet/il/29/remote
Inet/il/29/status

)Het/tcp/...
/net/udp/...
/net/cs

As with all these examples, no special system calls required.
Just open, read, and write files.

Example devices (cont’d.)

Mouse

/dev/imouse
/dev/cursor

Raster Graphics

/dev/screen
/dev/window
/dev/draw

Format of/dev/draw is RPC over a file. (Nested RPC.)
void
draw(lmage *dst, Rectangle dr,

Image *src, Point sp,
Image *mask, Point mp);

/dev/draw:
1d1
2 bytes of destination id
4x4 bytes of destination rect.
2 bytes of source id

Structure of the window system ()

To write a window system,
Read/dev/cons for input chars.
Read/dev/imouse for mouse position & buttons.
Write /dev/draw to update display.

Now, what does a client do?
Read/dev/cons for input chars.
Read/dev/mouse for mouse position & buttons.
Write /dev/draw to update display.

Same thing!

Structure of the window system (lI)

So, Rio is just a multiplexer:
Provide same (appearance of) environment for applications.

Give each client these filamesbut each client gets
distinct set.

Different/dev/cons ,/dev/imouse in each window. (In
fact,8%zalso provided a differertlev/draw but Rio
doesn’t, which makes it much more efficient. Details
omitted.)

Compare this to Unixdev/tty , which is same file but
different contents. With Riddev/cons Is actually a
differentfile, but samaameand different contents. (I argue
this is much cleaner.)

Summary: Each window mounts a different root of a distinct
file system implemented by Rio, containing an identical-
looking simulation of the standard device file set for display,
mouse, and keyboard.

10

Intermission: Nice side-effects

Window delete: reference count the open files.
DEL (interrupt)
/dev/cons

Remote transparency: if you can export a file (e.g. NFS), you
can export the window system.

Recursion:
Easy debugging: run window system in a window.
Easy off-loading: run window system on CPU server.
Easy simulation: can run X in a window.

11

The problem

Rio must manage the following all at once:

Input from the mouse

Input from the keyboard

Window management (unlike in X, the user interface for
window management is part of Rio)

Output to the display

/O requests in 9P from the client to read and write
/dev/cons ,/dev/mouse ,/dev/window , etc.

How to manage all these parallel, simultaneous requirements?

Also, as in any multiplexer, how to avoid locking the critical
resource (internal data structures) for every operation?
Locking is expensive and deadlock-prone.

12

Concurrent Design (1): Process allocation

For now, let’'s not worry about process vs. thread. Give every
separate component a process to handle it:

1. Windows. (Each will run an instance of the savirect|
function with different arguments.)

2. The mouse.

3. The keyboard.

4. The user interface for window management.

5. The file server connection that receives 9P requests.
6. Each incoming client 1/O request.

All these processes will communicate entirely by messages on
channels.

Note that most of the time, all these processes will be blocked
waiting for something. The power of the model is that we can
decompose the complex state of the system into independently
executing, simple sequences of operations. External events
will naturally lead to sequencing of the processes through their
actions by scheduling the associated communications.

13

Process vs. thread

The choice of which to pick is dictated by two factors: (1)
blocking system calls and (2) locking protocols.

1. A system callread , write , etc.) will block, and that

means all threads in the same process will block with it.
Therefore, we wish to execute blocking system calls (read the
mouse, read the 9P pipe, etc.) in separate processes, and have
them pass their data on channels when they get it.

2. Processes executing in parallel have no guarantees about
simultaneous access to memory, so we must use locks to
protect data structures. Howevemeadswithin a single

process do not execute simultaneously, and scheduling occurs
only at communication points, so between communications a
thread can access global data without interfering with other
threads in the same process, and without needing to set locks.

Our overall design is therefore:

A single process responsible for all shared data, holding all
threads that must access the data.

A separate process for each blocking call, passing requests
for action to threads in the main process.

A Picture

Boxes are processes, ovals are threads.

Mouse

|

Other communications exist, e.g. User interface thread also
talks to window control threads to signal resize, etc.

15

Comments

Rio can be thought of as a main program (the big box) with
lots of threads within it, and several server processes
connecting operating system services to it.

No shared data is touched outside the box, so locking is
unnecessary.

Communication synchronizes, schedules, and protects data
from modification.

This parallel composition of processes/threads means that the
system doesn’t block while waiting for something; e.qg.
window control actions can happen while client is busy

writing to window.

It's remarkably easy to write software this way.

16

Xfids (1)

Xfidscarry the state of a single 9P message through the
system. They are managed as a pool of anonymous threads
that get allocated and assigned to a 9P message dynamically.

Incoming request might be answerable by file server process
directly, e.g. a request to read the directory. If it needs access
to shared data, though, it hands off the request, like this:

Xfids (2): 9P Process

Xfid *x;
for(;;{
read(fd, message);
if(x == 0){
sendp(cxfidalloc, nil);
X = recvp(cxfidalloc);
}

convert message into x;
x = (*fcall[x->type])(X);
}

extern void xfidread(Xfid*);

static
Xfid*

fsysread(Xfid *x)

{

if(read of directory){
handle message;
return X;

}

sendp(x->c, xfidread);

return nil;

17

Xfids (3): Threads in main process

Allocator process is trivial; most of code omitted here. It
starts a new Xfid like this:

x=emalloc(sizeof(Xfid));
x->c=chancreate(sizeof(void(*)(Xfid*)), 0);
threadcreate(xfidctl, x, 16384);

Xfid controller looks like this:
void
xfidctl(void *arg)
{
Xfid *x;
void (*f)(Xfid*);
X = arg;
for(;; 1
f = recvp(x->c);
(*H(x);
if(decref(x) == 0)
sendp(cxfidfree, x);

b

void
xfidread(Xfid *x)
{

}

[* handle read as thread in main proc */

18

