Structural Regular Expressions

Rob Pike

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

The currentUNIX® text processing tools are weakenediy built-in concept of a
line. Thereis a simple notation that catescribe the ‘shape’ of files when the typical
array-of-lines picture is inadequat@hat notationis regular expressiondJsing regular
expressions to describe the structure in addition to the contefitesohas interesting
applications, and yields elegant methods for dealing with some problems the current tools
handle clumsily. When operations using these expressians composed, the result is
reminiscent of shell pipelines.

The Peter-On-Silicon Problem

In the traditionaimodel,UNIX text files are arrays of lines, and all the familiar teelgrep , sort
awk, etc.— expect arrays of lines as inputhe outputof Is (regardless of options) is a list of files, one
per line, that may be selected by tools sucgrep :

Is -I /usr/ken/bin | grep 'rws.*root’

(I assume that the reader is familiar with th&lX tools.) Themodel is powerful, but it is also pervasive,
sometimes overly soMany UNIX programs would benore general, and more useful, if they could be
applied to arbitrarily structured inputor examplediff could in principle report differences at tke
function level instead of the linevel. But if the interesting quantum of information isn’'t a line, most of
the tools (includingdiff) don’t help, or at best do poorlyWorse,perverting thesolution so the line-
oriented tools can implement it often obscures the original problem.

To see how a line oriented view of text can introduce complicatimmsider the problem of turning
Peter into silicon.Theinput is an array of blank and non-blank characters, like this:

B
BHHHHHH

HHHH #ﬁ%%%
HHHH #
Bt HH

B Hi#

B # ;‘i ##gﬁ

The output is to be statements in a language for laying out integrated circuits:
rect minx miny maxx maxy

The statements encode where the non-blank characters are in theTiamimplify the problem slightly,

the coordinate system hagositive to the right ang positive down. The output need not be efficient in its
use of rectanglesAwk is the obvious language for the tasWich is a mixture of text processing and
geometry, hence arithmetiSincethe input is an array of lines, ask expects, the job should be fairly

easy, and in fact it isHereis anawk program for the job:

BEG N

y=1
}
/N

for(x=1; x<=length($0); x++)

i f(substr($0, x, 1)=="#")
print "rect", x, y, x+1, y+1
y++

}

Although it is certainly easy to write, there is something odd about this program: the line-driven nature of
awk results in only one obvious advantagethe ease of tracking. Thetask ofbreaking out the pieces of

the line is left to explicit codesimple procedural code that does not use any advanced technology such as
regular expressions for stringanipulation. This peculiarity becomes more evident if the problem is
rephrased to demand that each horizontal run of rectangles be folded into a single rectangle:

BEG N{
y=1
}
IRV RY
for(x=1; x<=length($0); x++)
i f(substr($0, x, 1)=="#"){
x0=x;
whi | e(++x<=l engt h($0) && substr($0, x, 1)=="#")

print "rect", x0, vy, x, y+1
}
y++

}

Here a considerable amount of code is being spent to do a job a regular expression could do vermnsimply.
fact, the only regular expression in the prograrf,isvhich is almost irrelevant to theput. (Newerver-

sions ofawk have mechanisms to use regular expressions within actions, but even there the relationship
between the patterns that match text and the actions that manipulate the text is still too weak.)

Awk’ s patterns— the textin slasheg / that select the input on which to run the actions, the pro-
grams in thébraceq } — pass to the actions the entire line containing the text matched by the pBiiérn.
much of the power of this idea is being wasted, since the matchezhteghly be a linelmaginethatawk
were changedo the patterns instead passed precisely the text they matched, with no implicit line bound-
aries. Ouffirst program could then be written:

print "rect", x, x+1, y, y+1
X++
}
I\n/{
x=1
y++
}

and the second version could usgular expressions to break out complete strings of blanks’arsiim-
ply:

BEG N
x=1
y=1
}
[+ {
x+=Il engt h($0)
}
[#+/{
print "rect", x, x+length($0), y, y+1
x+=Il engt h($0)
}
\n/{
x=1
y++
}

In these programs, regular expressions are being used to do more than just select the input, thargay they
used in all the traditionaNIX tools. Insteadthe expressions are doing a simple parsing (or at least a
breaking into lexical tokens) of the inpusuchexpressions are callstfuctural regular expressions or just
structural expressions.

These programs are nodtably shorter than the originals, but they are conceptually simpler, because
the structure of the input is expressed in the structure of the programs, rather than in procedufdlecode.
labor has been cleanly dividéétween the patterns and the actions: the patterns select portions of the input
while the actions operate on theifiheactions contain no code to disassemble the input.

The lexical analysis generatbex uses regular expressions to define the structure of lexktits
implementation is poor, and since it is not an interactive proditanoutput must be run through the C
compiler) it has largely been forgotten as a day-to-day tBat.even ignoring issues of speed amuhve-
nience,l ex still misses out on one of the most important aspectgrottural expressionsAs the next
section illustrates, structural expressions bamested to describe the structure of a file recursively, with
surprising results.

Interactive Text Editing

It is ironic thatUNIX files are uninterpreted byte streams, yet the style of programming thatymost
ifies UNIX has a fairly rigid structurémposed on files— arrays of not-too-long lines(The silent limits
placed orline lengths by most tools can be frustratingljhoughtheawk variant introduced above does
not exist, there is an interactive text edigmm that treats its files as simple byte streams.

Thesam command language looks much like thaedf but the details are different becassen is
not line-oriented.Forexample, the simple address

[string/

matches the next occurrence of “stringiot the next line containing “string” Althoughthere are short-
hands to simplify common actions, the idea of a line must be stated explici#lgnin

Samhas the same simple text addition and modification commeshdims:a adds text after the cur-
rent locationj adds text before it] deletes it, and replaces it.

Unlike ined, the current location isam need not b¢and usually isn’t) a lineThis simplifies some
operations considerably-or example,ed has several ways to delete all occurrences of a striagfile.
One method is

o/string/ s/llg

It is symptomatic that aubstitute command is used to delete text within a line, while a delete command is
used to delete whole lineg\lso, if the string to beleleted contains a newline, this technique doesn’t work.
(A file is just an array of characters, but some characters are more equal than @&herss) more
forthright:

x/string/d

Thex (‘extract’) command searches for each occurrence of the patternjsithe subsequent command
with the current text set to the matgtot to the line containing the matchYotethat this is subtly different
fromed’s g commandx extracts the complete text for the commamdyerely selects linesThereis also

a complement t®, calledy, that extracts the piecestween the matches of the pattern.

Thex command is a loop, arghm has a corresponding conditional command, callédnrelated to

ed’s g):

g/pattern/command
runs the command if the current temaitches the patterrNotethat it does not loop, and it does not change
the current text; it merely selects whether a command will Hencethe command to print alines con-
taining a string is

x/.X\n/ g/string/p
— extract all the lines, and print each one t@&itains the stringThereverse conditional i¢, so to print
all lines containing ‘rob’ but not ‘robot’:

x/.x\n/ g/rob/ virobot/p
A more dramatic example is to capitalize all occurrences of words ‘i’:

x/[A-Za-z]+/ gfil vi..I c/l

— extract all the words, find those that contain ‘i’, reject those with twoae characters, and change the
string to ‘I’ (borrowing a little syntax from the substitute commar@ipmepeople have overcome the dif-
ficulty of selecting words or identifiers using regular expressions by adding notation éaptessions,
which has the disadvantage tlthé precise definition of ‘identifier’ is immutable in the implementation.
With sam, the definition is part of the program and easy to change, although more long-winded.

The program to capitalize ‘i's should be writable as
xI[A-Za-z]+ g/™i$/ ¢/l

That is, the definition of and$ should reflect the structure of tirgut. For compatibility and because of
some problems in the implementation, howe{end$ in sam always match line boundaries.

In ed, it would not be very useful to nest global commands because the ‘outpatioflobal is still
a line. However,sam's extract commands can be nested effectiv€Bhis benefit comes from separating
the notions of looping and matchingQonsiderthe problem of changing all occurrences of the variable
in a C program to some other name, sagn Themethod above will work—

x/[a-zA-Z0-9]+/ g/n/ vl..I c/lnum/

— except that therare places in C where the ‘identifier'occurs but not as a variable, in particular as the
constanin in characters or stringslo prevent incorrect changes, the command can be prefixeddy-a
ple ofy commands to weed out characters and strings:

yi*yl'*[x/[a-zA-Z0-9]+/ g/n/ v/..I c/num/

This example illustrates the power of composing extractions and conditionals, but it is not artificial: it
was encountered when editing a real program (in §arh). Thereis an obvious analogwith shell pipe-
lines, but these commaietains are subtly— and importantly— different from pipelines.Dataflows into
the left end of gipeline and emerges transformed from the right dnd:hains, the data flow is implicit:
all thecommands are operating on the same data (except that the last element of the chain may modify the
text); the complete operation is done in place; and no data adtoal/through the chainWhatis being
passed from link to link in the chain is a view of the data, until it looks right for the final commamel
chain. Thedata stays the same, only the structure is modified.

Morethan oneline, and lessthan oneline

The standardJNIX tools have difficulty handling several lines at a time, if they can do so at all.
Grep, sort anddiff work on lines only, although it would be usefiithey could operate on larger
pieces, suclas arefer database.awk can be tricked into accepting multiple-line records, but then the
actions must break out treab-pieces (typically ordinary lines) by explicit codeed has a unique and
clumsy mechanism for manipulating multiple lines, which few have mastered.

Structural expressions make it easy to specify multiple-line acti@omsidera refer database,
which has multi-line records separated by blank lireagchline of a record begins withgercent sign and
a character indicating the type of informationtbe line:A for author,T for title, etc. Stayingwith sam
notation, the command to searctefer database for all papers written by Bimmler is:

x/(.+\n)+/ g/%A.*Bimmler/p

— break the file into non-empty sequences of non-empty lines and priseanylines containing ‘Bimm-
ler’ on a lineafter ‘%A’. (To be compatible with the other tools,.d oes not match a newline Except
for the structural expression, this is a reggeep operation, implyingthatgrep could benefit from an
additional regular expression to define the structure of its inpputhe short term, however, ‘atream
sam,” analogous t@sed, would be convenient, and is currently being implemented.

The ability to compose expressions makes it easy to tureetdreh programFor example, we can
select just thditles of the papers written by Bimmler by applying another extraction:

X/(.+H\n)+/ g/%A.*Bimmler/ x/.\n/ g/%T/p

This program breaks the records with author Bimmler hatckindividual lines, then prints the lines con-
taining%T

There are many othexamples of multiple-line components of files that may profitably be extracted,
such as C functions, messages in mail boxes, paragrapiedfin input andrecords in on-line telephone
books. Notehat, unlike in systems that define file structuagsiori, the structures are applied by the pro-
gram, not the dataThis means the structure can change from application to applicatometimes a C
program is an array of functions, but sometimes it is an array of Emessometimes it is just a byte
stream.

If the standard commands admitted a structural expressgtéomine the appearance of their input,
many currently annoying problems could become simple: imaginersion ofdiff that could print
changed sentences functions instead of changed lines, @o#a that could sort aefer database. The
case ofsort s particularly interesting: not only can the shapéhefinput records be described by a struc-
tural expression, but also the shape of the sort Kéne current bewildering maze of options to control the
sort could in principlée largely replaced by a structural expression to extract the key from the record, with
multiple expressions to define multiple keys.

The awk of the future?

It is entertaining to imagine a versionafk that applies these ideas throughokirst, as discussed
earlier, the text passdd the actions would be defined, rather than merely selected, by the paEerns.
example,

[#+] { print }

would print only# characters; conventionaWk would instead print every line containidgcharacters.

Next, the expressions would define how the inpyiaissed. Insteadof using the restrictive idea of a
field separator, the iterations implied by closures in the expressioderaarcate fieldsFor instance, in
the program

[(.H\n)+/ { action }

the action sees groups lofes, but the outermost closure (th@perator) examines, and hence can extract,
the individual lines.ed uses parentheses to define sub-expressions floadtsreferencing operator¥ve

can modify this idedo define the ‘fields’ inawk, so$1 defines the first element of the closure (the first
line), $2 the second, and so oMore interestingly, the closures could generate indicesfrays, so the
fields would be calledsay,input[1] and so on, perhaps with the unadorned identifiput holding

the original intact string.This has the advantage that nested closuresgeserate multi-dimensional
arrays, which is notationally clear(Thereis some subtlety involving the relationship betwégput
indices and the order of the closures in the pattern, but the details are not important here.)

Finally, as insam, structuralexpressions would be applicable to the output of structural expressions;
that is, we would be able to nest structural expressions insi@etibas. Thefollowing program computes
how many pages of articles Bimmler has written:

J(.+H\n)+/{ # break into records
input ~ /%A.*Bimmler/{ # is Bimmler author? (see text)
1%P *([0-9]+)-([0-9]+){ # extract page numbers
pages+=input[2]-input[1]+1
}
}
}
END{
print pages
}

Realawk uses patternghat is, regular expressions) only likam’'s g command, but ouawk’s patterns
arex expressions. Obviouslyye need both to exploit structural expressions wHilis is why in the pro-
gram above the test for whetheput contains a paper by Bimmler must be written as an explicit pattern
match. The&nnermost pattern searches for lines containing two nunseperated by a dash, which is how
refer stores the starting and ending pages of the article.

This is a contrived example, of course, but it illustrates the basic idéasealawk suffers from a
mismatch between the patterns and the actitingould be improved bynaking the parsing actions of the
patterns visible in the actions, and by havinggh#tern-matching abilities available in the actioBslan-
guage with regular expressions should not base its text manipulaticsubsta function.

Comments

The use of regular expressions to describe the structure afféegowerful and convenient, if unfa-
miliar, way to address a number of difficulties therentUNIX tools share.Thereis obviously around this
new notation a number of interesting problems, and | am not pretending to have addressell. them
Rather, | have skipped enthusiastically from example to example to indicate the brehdthasfsibilities,
not the depth of the difficultiesMy hope is to encourage others to think atibese ideas, and perhaps to
apply them to old tools as well as new ones.

Acknowledgements

John Linderman, Chris Van Wyk, Tom Duff and Norman Wilson will recogetrae of their ideas
in these notesl hope | have not misrepresented them.

