Kernel Extension.” Also, as noted above for pipeline

speeds, your own mileage may vary.

There is certainly a place for binary i/o in appli-
cations needing high-speed, large-volume communica-
tion across networks. But for most purposes, human-
readable formats are the way to go, with optional
use of shared memory for transferring selected large
chunks of data.

I thank Bill Coughran, David Gay, Cleve Moler,
Dennis Ritchie, Tom Szymanski, and especially Brian
Kernighan for illuminating remarks. RenderMan is a
registered trademark of Pixar. UNIX is a registered
trademark of UNIX System Laboratories, Inc. VAX
is a trademark of Digital Equipment Corporation.

References

[1] AT&T, System V Interface Definition: Issue 2,
vol. I, 1985.

[2] W. M. CoUGHRAN, JR. AND E. GROSSE, A phi-
losophy for scientific computing tools, SIGNUM
Newsletter, 24:2/3 (1989), pp. 2-9.

[3] ——, Techniques for scientific animation, SPIE
Proceedings, 1259 (1990), pp. 72-79.

[4] Pi1xAR, The RenderMan Interface, Version 3.1,
1989. 3240 Kerner Blvd, San Rafael CA 94901.

#include <stdio.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>
#define BAD (char *)(-1)

char* shm_create(char* name, mode_t mode, int nbytes)
{
char* shm = 0;
shmid = shmget(IPC_PRIVATE, 128+nbytes, mode|IPC_CREAT);
if (shmid >= 0) {
shm = (char *)shmat(shmid, 0, 0);
if (shm == BAD) {
fprintf(stderr,'couldn’t attach %d\n",shmid);
shm = 0;
} else sprintf(shm, "%d %.100s%c\n", shmid, name, 0);
}
return(shm);

}

char* shm_open(char* id)
{
char* shm = 0;
n = sscanf(id, "%d", &shmid);
if (n == 1) {
shm = (char*)shmat(shmid, 0, SHM_RDONLY);
if (shm == BAD || shm == 0) shm = 0;
else { /* finally, check that shm matches id */
n = strlen(id);
if (id[n-1] == ’\n’) n--;
if (strncmp(shm, id, n) '= 0) shm = O;
¥
}
return(shm);

}

int shm_close(char* shm)

{
return(shmdt(shm));
}

Figure 1: Implementation of proposed bulk-transfer primitives using shmget.

Table 1: Elapsed time (in seconds) for transferring 200,000 doubles.

shmget | mmap | alb | a>x;b<x | ascii | malloc
(a) writer | 0.20 0.43 | 0.73 | 0.43 10.5 0.20
(b) reader | 0.07 0.12 | 0.80 | 0.36 10.7
total | .3 i 8 9 10.7

stunning. Reading the data this way is a factor of
three faster than just allocating space in the normal
fashion!

The tests were run on an SGI 4D/240 with 128MB
of main memory, running IRIX 4D1-3.3.2; process wall
clock times were measured by gettimeofday. Chang-
ing between SMD and SCSI disks for the temporary
file made no discernible difference; this was no surprise
since the system had plenty of main memory for its
disk buffer cache. Whether the programs were loaded
with -1Imalloc or not also made no difference. Sim-
ilar times for binary i/o were observed on a MIPS
M2000, but on our Vax 8550 running Version 10 Re-
search Unix, the individual times for the pipeline are
3 to 4 times faster than using intermediate files. On a
1386-based machine running SystemV, the total times
for 20,000 doubles were 8.0, NA, 8.3, 11.6, 19.8, 2.9.

4 Practical trial

Encouraged by the results of the previous section
that meaningful speedups are possible on at least
some important classes of machines, the approach
was tested on a real application, the tensor-spline
toolbox[2, 3]. Before the current project was con-
ceived, 35 commands had already been implemented
and editing the source for each one of them would
have been intolerable. Fortunately, the entire conver-
sion only required adding a dozen lines of code to two
i/o functions and relinking.

The results were satisfying. On a typical 503 ar-
ray, a trivial range computation dropped from 9 sec-
onds elapsed time to less than a second. A graphics-
intensive command improved from 17 seconds elapsed
time to 6 seconds. Obviously, if we had been using bi-
nary i/o previously the improvement would have been
less dramatic.

An implementation of the shm_create interface in
terms of the vendor-supplied shmget was easy; the
code is displayed in Figure 1 and is available by send-
ing the message

send svid from research/shm

by electronic mail to netlib@research.att.com or
uunet !research!netlib. Implementations for other
systems would be welcome; for portability, a POSIX
version based on binary disk files is planned.

The code is straightforward, though cluttered a lit-
tle by error checking. The newline added to the label
is perhaps obscure; in systems where shared memory
segments are in the ordinary file system, that simpli-
fies displaying the label.

5 Caveats

I wish to emphasize that I whole-heartedly endorse
the long UNIX tradition of ASCII intermediate files.
Their performance penalty is amply compensated by
their self-documenting nature and the ease of con-
necting programs not deliberately designed to work
together. In discussions on file exchange formats in
the visualization community, I've fought for the ASCII
camp against the binary camp, noting that one user of
our toolbox even converted his binary, delta-encoded
files into an ASCII format, ran compress, and wound
up with a smaller file than the original. Netnews con-
tains numerous queries from users of binary systems,
asking how to convert their data; for ASCII systems,
the solution is usually an obvious editor script.

The RenderMan Interface Bytestream[4] (RIB)
adopts the useful approach of defining both an ASCII
and a fully equivalent binary form, so that adherents of
both approaches are satisfied. With i/o libraries that
read either form and stand-alone filters that provide
easy conversion, such a scheme meets diverse needs.
(Tronically, in my experience a compressed ASCII RIB
file is often smaller than the corresponding compressed
binary RIB file.) The point being made here, however,
is that if the only reason to give up ASCII is raw per-
formance, one might wish to switch to shared memory
rather than binary.

Although many commercial UNIX systems provide
these shared memory functions, it should be noted
that the SVID[1] states that these are optional and
“may not be present in all implementations of the

writing what it wishes in the remaining nbytes, the
writer process calls

int shm_close(char* shm)

or may depend on the default closing of all segments
upon process exit. The reader process gets L from the
writer by some other channel, then calls

char* shm_open(char* L)

to get a shm pointer like before. When done the reader
calls shm_close or exits. The design is modeled after
that for handling UNIX files. Both shm_create and
shm_open return a null pointer if they encounter an
error; shm close returns a non-zero on error. The
library call perror may provide additional diagnostic
information.

If our simulation and graphics programs ordinarily
communicate by passing a file of the form

npts 10
coeff 012345
6789

then we may adopt the convention that the coefficient
array may be replaced by a pointer to a shared mem-
ory segment. The file

npts 10
coeff shmid 402 simdat-3/23-seriesb

continues to pass through pipelines and be saved to
disk just like the old one; the only change is that the
library routine for reading coeff must now check if
the first coefficient is shmid and if so replace malloc
and read calls by shm_open. This does mean the sim-
ulation program will need a flag to specify when to use
shared memory, since we certainly want to retain the
default of simple ASCII, i.e. printable, output files.
But the complication is restricted to a small part of
the program and requires little extra effort on the part
of the user.

Filters should always be provided to expand the
shmid fields, for the benefit of programs (and people!)
that do not care to deal with specialized formats. The
philosophy is that the master copy is ASCII, which
is the only format that should be archived. Since
shared memory segments are so transitory, internal
data structures may safely be changed without risk of
making old files unreadable.

There is one mundane administrative issue with di-
rect use of shmget, which returns simple integer labels.
If, say, a dozen segments are created in the course of
a simulation run and several simulations are active,
it may not be easy to keep track of all these integers

and clean up properly. Hence the convention of start-
ing each shared memory segment with 128 bytes con-
taining the integer as part of a descriptive character
string. A tiny program that prints the string, user id,
creation and access times (analogous to 1s) and the
system-provided command ipcrm -m label (analogous
to rm) can together reduce the administrative burden
to something like cleaning up the /tmp disk directory.

General use of shared memory would require care-
ful synchronization to avoid timing bugs and dead-
lock. For the limited objective of accelerating i/o in
pipelines, no such issues arise.

3 Benchmarking

Straight binary i/o (using the read and write UNIX
system calls) is a plausible alternative to shared mem-
ory. To investigate the relative performance, a sim-
ple experiment was performed involving two processes
(a) setting and writing and (b) reading and summing
200, 000 doubles. The size of the transfer is typical of
current scientific computation, though use of only one
floating point operation per array element (to empha-
size i/o cost) is not! To bias the case in favor of binary
i/o, this test only considers the case of reading a large
contiguous array, not random access to a subset.

Five mechanisms for passing the array were tried.
First, shmget was used to create memory for the ar-
ray; the writer process (a) exited before the reader (b)
began. The shared memory primitive mmap, which is
provided by some operating systems instead of or in
addition to shmget and which involves explicit map-
ping of memory to disk files, was also timed. In the
third and fourth cases, space for the array was cre-
ated by calling malloc in both processes and then us-
ing write and (multiple) reads. For comparison, an
ASCII pipeline was also timed, as was a program that
merely called malloc and set the array, but did not
write it out. Wall clock times given in Table 1 are
for the best of five runs; there was not much variation
over the repetitions.

As expected, binary is much faster than ASCII.
The fact that intermediate files and pipelines run at
essentially the same speed shows that the operating
systems’ disk buffer cache in main memory is doing
its job. In this particular implementation, anyway,
shmget beats mmap; since the operating system is mak-
ing less promise of permanence, this is not unreason-
able.

One conclusion stands out most clearly. The speed
of the reader under shmget, which would be the in-
teractive graphics process under the scenario in §1, is

How Shall We Connect Our Software Tools?

Eric Grosse
AT&T Bell Laboratories
Murray Hill NJ 07974 USA.

ehg@research.att.com.

Abstract

Traditionally we connect our software tools using
human-readable files. This is a conscious decision to
buy flexibility and understandability at some cost in
performance relative to binary file formats. This note
explores the possibility of using shared memory func-
tions to retain most of the existing style while leapfrog-
ging the speed of reading binary files, at least in some
environments and for some applications.

1 The performance issue

Imagine you are a scientist running a three-
dimensional differential equation simulation and need-
ing to look at the solution at various time steps. Either
you have a huge monolithic program to build, or else
you have a huge amount of data to transfer between
two programs. The latter alternative is generally re-
garded as superior, and there will usually be so much
computation going on in both phases that the cost
of even a slow Fortran formatted input/output (i/o)
library is not prohibitive. But as the overall task is
broken into a pipeline of more and more processes,
either for software engineering or parallel processing
reasons, i/o costs can become significant.

Experience building and using a collection of visu-
alization tools[2, 3] which tend to do a modest amount
of arithmetic on large arrays has been the immediate
cause for examining this topic, though it is clearly a
general software issue. Profiling reveals that as much
as half the cpu time goes to i/o. Converting to binary
i/o is undesirable, because past experience has taught
that binary formats tend to become indecipherable af-
ter a few years and represent an immediate hurdle
when trying to collaborate with others. Is there an-
other way?

Consider the problem of a writer process which has
generated a large array and several reader processes
that each need to access some parts of the array. The

most common case is that there is a single reader that
needs the entire array, but the more general case is also
important. For example, a graphics program may only
need coeflicients on the external faces of a domain, but
as the user interactively slices the domain, the graph-
ics needs rapid access to new parts of the array. Or
imagine a kanji translation program that needs fast,
scattered access to a dictionary.

2 Shared memory as a candidate solu-
tion

Many UNIX systems provide the ability to create
segments of shared memory that may be passed be-
tween processes. These segments act somewhat like
temporary files, in that they continue to exist even
after the process that created them dies.

The particular functions that do this (called shmget
and shmat) have calling sequences specified by the Sys-
tem V Interface Definition (SVID)[1]. Hence programs
calling shmget are portable to many machines (e.g.
SGI, Stardent, Sun) of interest to the visualization
community. Some machine architectures, however, re-
quire a different approach. On a Cray, it might be ap-
propriate to use the Solid State Disk; on distributed
memory machines, explicit message-passing may be
needed. The following three C functions are there-
fore proposed, intended to capture the few features of
shared memory that we need while allowing efficient
alternative implementations.

The writer process calls

char* shm_create(char*name,0666,int nbytes);

here name is a descriptive string; 0666 can be replaced
by an arbitrary protection mode as for files; nbytes
is the amount of space to be written. The return
value, shm, is a pointer to an area of 128+nbytes, of
which the first 128 contains a string composed of name
and implementation-dependent information to yield a
unique label L for the shared memory segment. After

