
Awk � A Pattern Scanning and Processing Language
(Second Edition)

Alfred V. Aho

Brian W. Kernighan

Peter J. Weinberger

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

Awk is a programming language whosebasicoperationis to searcha setof files for
patterns,and to perform specifiedactionsupon lines or fields of lines which contain
instancesof thosepatterns.Awk makescertaindataselectionandtransformationopera-
tions easy to express; for example, theawk program

length > 72

prints all input lines whose length exceeds 72 characters; the program

NF % 2 == 0

prints all lines with an even number of fields; and the program

{ $1 = log($1); print }

replaces the first field of each line by its logarithm.

Awk patternsmay include arbitrary booleancombinationsof regularexpressions
and of relational operatorson strings, numbers,fields, variables,and array elements.
Actions may include the samepattern-matchingconstructionsas in patterns,as well as
arithmeticandstringexpressionsandassignments,if-else,while, for statements, and mul-
tiple output streams.

This reportcontainsa user’sguide,a discussionof the designandimplementation
of awk , and some timing statistics.

September 1, 1978

Awk � A Pattern Scanning and Processing Language
(Second Edition)

Alfred V. Aho

Brian W. Kernighan

Peter J. Weinberger

Bell Laboratories
Murray Hill, New Jersey 07974

1. Introduction
Awk is a programminglanguagedesignedto

make many common information retrieval and text
manipulationtaskseasyto stateandto perform.

The basicoperationof awk is to scana set of
input lines in order, searchingfor lines which match
any of a set of patternswhich the userhasspecified.
For eachpattern,anactioncanbespecified;this action
will beperformedon eachline thatmatchesthepattern.

Readersfamiliar with theUNIX® programgrep
[unix programmanual] will recognizethe approach,
althoughin awk thepatternsmaybemoregeneralthan
in grep , and the actions allowed are more involved
than merely printing the matchingline. For example,
theawk program

{print $3, $2}

prints the third and secondcolumnsof a table in that
order. Theprogram

$2 ∼ /A |B |C/

prints all input lines with an A, B, or C in the second
field. Theprogram

$1 != prev { print; prev = $1 }

prints all lines in which the first field is different from
thepreviousfirst field.

1.1. Usage

Thecommand

awk program [files]

executesthe awk commandsin the string programon
the setof namedfiles, or on the standardinput if there
areno files. Thestatementscanalsobeplacedin a file
pfile, andexecutedby thecommand

awk �f pfile [files]

1.2. ProgramStructure

An awk programis a sequenceof statementsof
theform:

pattern { action }
pattern { action }
...

Eachline of input is matchedagainsteachof the pat-
ternsin turn. For eachpatternthatmatches,theassoci-
ated action is executed. When all the patternshave
beentested,the next line is fetchedand the matching
startsover.

Either the patternor the actionmay be left out,
but not both. If there is no action for a pattern,the
matchingline is simply copiedto the output. (Thus a
line which matchesseveralpatternscanbeprintedsev-
eral times.) If thereis no patternfor anaction,thenthe
action is performedfor every input line. A line which
matchesno patternis ignored.

Since patternsand actions are both optional,
actionsmustbe enclosedin bracesto distinguishthem
from patterns.

1.3. RecordsandFields

Awk input is divided into ‘‘records’’ terminated
by a recordseparator.Thedefaultrecordseparatoris a
newline,soby defaultawk processesits input a line at
a time. Thenumberof thecurrentrecordis availablein
a variablenamedNR.

Each input record is consideredto be divided
into ‘‘fields.’’ Fieldsarenormally separatedby white
space� blanksor tabs� but the input field separator
may be changed, as described below. Fields are
referredto as$1, $2, andso forth, where$1 is the first
field, and $0 is the whole input record itself. Fields
may be assignedto. The numberof fields in the cur-
rentrecordis availablein a variablenamedNF.

The variablesFS andRS refer to the input field
andrecordseparators;theymaybechangedat anytime
to any single character. The optional command-line
argument �Fc may also be used to set FS to the

- 2 -

character c .

If the record separator is empty, an empty input
line is taken as the record separator, and blanks, tabs
and newlines are treated as field separators.

The variable FILENAME contains the name of
the current input file.

1.4. Printing

An action may have no pattern, in which case
the action is executed for all lines. The simplest action
is to print some or all of a record; this is accomplished
by the awk command print. The awk program

{ print }

prints each record, thus copying the input to the output
intact. More useful is to print a field or fields from
each record. For instance,

print $2, $1

prints the first two fields in reverse order. Items sepa-
rated by a comma in the print statement will be sepa-
rated by the current output field separator when output.
Items not separated by commas will be concatenated,
so

print $1 $2

runs the first and second fields together.

The predefined variables NF and NR can be
used; for example

{ print NR, NF, $0 }

prints each record preceded by the record number and
the number of fields.

Output may be diverted to multiple files; the
program

{ print $1 >"foo1"; print $2 >"foo2" }

writes the first field, $1, on the file foo1, and the sec-
ond field on file foo2. The >> notation can also be
used:

print $1 >>"foo"

appends the output to the file foo. (In each case, the
output files are created if necessary.) The file name
can be a variable or a field as well as a constant; for
example,

print $1 >$2

uses the contents of field 2 as a file name.

Naturally there is a limit on the number of out-
put files; currently it is 10.

Similarly, output can be piped into another pro-
cess (on UNIX only); for instance,

print | "mail bwk"

mails the output to bwk.

The variables OFS and ORS may be used to
change the current output field separator and output
record separator. The output record separator is
appended to the output of the print statement.

Awk also provides the printf statement for out-
put formatting:

printf format expr, expr, ...

formats the expressions in the list according to the
specification in format and prints them. For example,

printf "%8.2f %10ld\n", $1, $2

prints $1 as a floating point number 8 digits wide, with
two after the decimal point, and $2 as a 10-digit long
decimal number, followed by a newline. No output
separators are produced automatically; you must add
them yourself, as in this example. The version of printf
is identical to that used with C. [C programm lan-
guage prentice hall 1978]

2. Patterns

A pattern in front of an action acts as a selector
that determines whether the action is to be executed. A
variety of expressions may be used as patterns: regular
expressions, arithmetic relational expressions, string-
valued expressions, and arbitrary boolean combinations
of these.

2.1. BEGIN and END

The special pattern BEGIN matches the begin-
ning of the input, before the first record is read. The
pattern END matches the end of the input, after the last
record has been processed. BEGIN and END thus pro-
vide a way to gain control before and after processing,
for initialization and wrapup.

As an example, the field separator can be set to
a colon by

BEGIN { FS = ":" }
... rest of program ...

Or the input lines may be counted by

END { print NR }

If BEGIN is present, it must be the first pattern; END
must be the last if used.

2.2. Regular Expressions

The simplest regular expression is a literal string
of characters enclosed in slashes, like

/smith/

This is actually a complete awk program which will
print all lines which contain any occurrence of the
name ‘‘smith’’. If a line contains ‘‘smith’’ as part of a
larger word, it will also be printed, as in

blacksmithing

- 3 -

Awk regular expressionsinclude the regular
expressionforms found in the UNIX text editor ed [
unix program manual] and grep (without back-
referencing). In addition, awk allows parenthesesfor
grouping,| for alternatives,+ for ‘‘one or more’’, and?
for ‘‘zero or one’’, all asin lex . Characterclassesmay
beabbreviated:[a�zA�Z0�9] is thesetof all lettersand
digits. As anexample,theawk program

/[Aa]ho |[Ww]einberger|[Kk]ernighan/

will print all lines which contain any of the names
‘‘Aho,’’ ‘‘Weinberger’’ or ‘‘Kernighan,’’ whethercap-
italizedor not.

Regularexpressions(with the extensionslisted
above)must be enclosedin slashes,just as in ed and
sed . Within a regularexpression,blanksandthe regu-
lar expressionmetacharactersare significant. To turn
of the magicmeaningof oneof the regularexpression
characters,precedeit with a backslash.An exampleis
thepattern

/ \/.�\//

which matchesany string of charactersenclosedin
slashes.

One can also specify that any field or variable
matchesa regular expression(or does not match it)
with theoperators∼ and!∼. Theprogram

$1 ∼ /[jJ]ohn/

prints all lines wherethe first field matches‘‘john’’ or
‘‘John.’’ Notice that this will also match‘‘Johnson’’,
‘‘St. Johnsbury’’,and so on. To restrict it to exactly
[jJ]ohn,use

$1 ∼ /ˆ[jJ]ohn$/

Thecaretˆ refersto thebeginningof a line or field; the
dollar sign$ refersto theend.

2.3. RelationalExpressions

An awk patterncan be a relational expression
involving the usualrelationaloperators<, <=, ==, !=,
>=, and>. An exampleis

$2 > $1 + 100

which selectslines where the secondfield is at least
100greaterthanthefirst field. Similarly,

NF % 2 == 0

printslineswith anevennumberof fields.

In relationaltests,if neitheroperandis numeric,
a string comparisonis made;otherwiseit is numeric.
Thus,

$1 >= "s"

selectslines that begin with an s, t, u, etc. In the
absenceof any other information, fields are treatedas
strings,sotheprogram

$1 > $2

will performa stringcomparison.

2.4. Combinationsof Patterns

A pattern can be any booleancombinationof
patterns,using the operators | | (or), && (and), and !
(not). For example,

$1 >= "s" && $1 < "t" && $1 != "smith"

selectslines wherethe first field beginswith ‘‘s’’, but
is not ‘‘smith’’. && and | | guaranteethat their
operandswill beevaluatedfrom left to right; evaluation
stopsassoonasthetruth or falsehoodis determined.

2.5. PatternRanges

The ‘‘pattern’’ that selectsan action may also
consistof two patternsseparatedby a comma,asin

pat1,pat2 { ... }

In this case, the action is performed for each line
betweenanoccurrenceof pat1andthenextoccurrence
of pat2(inclusive). For example,

/start/, /stop/

printsall linesbetweenstartandstop,while

NR == 100, NR == 200 { ... }

doestheactionfor lines100through200of theinput.

3. Actions

An awk action is a sequenceof action state-
ments terminatedby newlines or semicolons. These
actionstatementscanbe usedto do a variety of book-
keepingandstringmanipulatingtasks.

3.1. Built-in Functions

Awk providesa ‘‘length’’ function to compute
the length of a string of characters. This program
printseachrecord,precededby its length:

{print length,$0}

length by itself is a ‘‘pseudo-variable’’ which yields
the length of the currentrecord;length(argument)is a
function which yields the lengthof its argument,as in
theequivalent

{print length($0),$0}

Theargumentmaybeanyexpression.

Awk alsoprovidesthe arithmeticfunctionssqrt,
log, exp, and int, for squareroot, basee logarithm,
exponential,and integerpart of their respectiveargu-
ments.

The name of one of these built-in functions,
without argumentor parentheses,standsfor the value
of thefunctionon thewholerecord. Theprogram

- 4 -

length < 10 || length > 20

prints lines whose length is less than 10 or greater than
20.

The function substr(s, m, n) produces the sub-
string of s that begins at position m (origin 1) and is at
most n characters long. If n is omitted, the substring
goes to the end of s. The function index(s1, s2) returns
the position where the string s2 occurs in s1, or zero if
it does not.

The function sprintf(f, e1, e2, ...) produces the
value of the expressions e1, e2, etc., in the printf for-
mat specified by f. Thus, for example,

x = sprintf("%8.2f %10ld", $1, $2)

sets x to the string produced by formatting the values of
$1 and $2.

3.2. Variables, Expressions, and Assignments

Awk variables take on numeric (floating point)
or string values according to context. For example, in

x = 1

x is clearly a number, while in

x = "smith"

it is clearly a string. Strings are converted to numbers
and vice versa whenever context demands it. For
instance,

x = "3" + "4"

assigns 7 to x. Strings which cannot be interpreted as
numbers in a numerical context will generally have
numeric value zero, but it is unwise to count on this
behavior.

By default, variables (other than built-ins) are
initialized to the null string, which has numerical value
zero; this eliminates the need for most BEGIN sections.
For example, the sums of the first two fields can be
computed by

{ s1 += $1; s2 += $2 }
END { print s1, s2 }

Arithmetic is done internally in floating point.
The arithmetic operators are +, �, �, /, and % (mod).
The C increment ++ and decrement �� operators are
also available, and so are the assignment operators +=,
�=, �=, /=, and %=. These operators may all be used
in expressions.

3.3. Field Variables

Fields in awk share essentially all of the proper-
ties of variables � they may be used in arithmetic or
string operations, and may be assigned to. Thus one
can replace the first field with a sequence number like
this:

{ $1 = NR; print }

or accumulate two fields into a third, like this:

{ $1 = $2 + $3; print $0 }

or assign a string to a field:

{ if ($3 > 1000)
$3 = "too big"

print
}

which replaces the third field by ‘‘too big’’ when it is,
and in any case prints the record.

Field references may be numerical expressions,
as in

{ print $i, $(i+1), $(i+n) }

Whether a field is deemed numeric or string depends
on context; in ambiguous cases like

if ($1 == $2) ...

fields are treated as strings.

Each input line is split into fields automatically
as necessary. It is also possible to split any variable or
string into fields:

n = split(s, array, sep)

splits the the string s into array[1], ..., array[n]. The
number of elements found is returned. If the sep argu-
ment is provided, it is used as the field separator; other-
wise FS is used as the separator.

3.4. String Concatenation

Strings may be concatenated. For example

length($1 $2 $3)

returns the length of the first three fields. Or in a print
statement,

print $1 " is " $2

prints the two fields separated by ‘‘ is ’’. Variables and
numeric expressions may also appear in concatena-
tions.

3.5. Arrays

Array elements are not declared; they spring into
existence by being mentioned. Subscripts may have
any non-null value, including non-numeric strings. As
an example of a conventional numeric subscript, the
statement

x[NR] = $0

assigns the current input record to the NR-th element of
the array x. In fact, it is possible in principle (though
perhaps slow) to process the entire input in a random
order with the awk program

- 5 -

{ x[NR] = $0 }
END { ... program ... }

The first action merely records each input line in the
array x.

Array elements may be named by non-numeric
values, which gives awk a capability rather like the
associative memory of Snobol tables. Suppose the
input contains fields with values like apple, orange, etc.
Then the program

/apple/ { x["apple"]++ }
/orange/ { x["orange"]++ }
END { print x["apple"], x["orange"] }

increments counts for the named array elements, and
prints them at the end of the input.

3.6. Flow-of-Control Statements

Awk provides the basic flow-of-control state-
ments if-else, while, for, and statement grouping with
braces, as in C. We showed the if statement in section
3.3 without describing it. The condition in parentheses
is evaluated; if it is true, the statement following the if
is done. The else part is optional.

The while statement is exactly like that of C.
For example, to print all input fields one per line,

i = 1
while (i <= NF) {

print $i
++i

}

The for statement is also exactly that of C:

for (i = 1; i <= NF; i++)
print $i

does the same job as the while statement above.

There is an alternate form of the for statement
which is suited for accessing the elements of an asso-
ciative array:

for (i in array)
statement

does statement with i set in turn to each element of
array. The elements are accessed in an apparently ran-
dom order. Chaos will ensue if i is altered, or if any
new elements are accessed during the loop.

The expression in the condition part of an if,
while or for can include relational operators like <, <=,
>, >=, == (‘‘is equal to’’), and != (‘‘not equal to’’);
regular expression matches with the match operators ∼
and !∼; the logical operators | |, &&, and !; and of
course parentheses for grouping.

The break statement causes an immediate exit
from an enclosing while or for; the continue statement
causes the next iteration to begin.

The statement next causes awk to skip immedi-
ately to the next record and begin scanning the patterns
from the top. The statement exit causes the program to
behave as if the end of the input had occurred.

Comments may be placed in awk programs:
they begin with the character # and end with the end of
the line, as in

print x, y # this is a comment

4. Design

The UNIX system already provides several pro-
grams that operate by passing input through a selection
mechanism. Grep , the first and simplest, merely prints
all lines which match a single specified pattern. Egrep
provides more general patterns, i.e., regular expressions
in full generality; fgrep searches for a set of keywords
with a particularly fast algorithm. Sed [unix pro-
gramm manual] provides most of the editing facilities
of the editor ed , applied to a stream of input. None of
these programs provides numeric capabilities, logical
relations, or variables.

Lex [lesk lexical analyzer cstr] provides gen-
eral regular expression recognition capabilities, and, by
serving as a C program generator, is essentially open-
ended in its capabilities. The use of lex , however,
requires a knowledge of C programming, and a lex
program must be compiled and loaded before use,
which discourages its use for one-shot applications.

Awk is an attempt to fill in another part of the
matrix of possibilities. It provides general regular
expression capabilities and an implicit input/output
loop. But it also provides convenient numeric process-
ing, variables, more general selection, and control flow
in the actions. It does not require compilation or a
knowledge of C. Finally, awk provides a convenient
way to access fields within lines; it is unique in this
respect.

Awk also tries to integrate strings and numbers
completely, by treating all quantities as both string and
numeric, deciding which representation is appropriate
as late as possible. In most cases the user can simply
ignore the differences.

Most of the effort in developing awk went into
deciding what awk should or should not do (for
instance, it doesn’t do string substitution) and what the
syntax should be (no explicit operator for concatena-
tion) rather than on writing or debugging the code. We
have tried to make the syntax powerful but easy to use
and well adapted to scanning files. For example, the
absence of declarations and implicit initializations,
while probably a bad idea for a general-purpose pro-
gramming language, is desirable in a language that is
meant to be used for tiny programs that may even be
composed on the command line.

In practice, awk usage seems to fall into two
broad categories. One is what might be called ‘‘report

- 6 -

generation’’ � processing an input to extract counts,
sums, sub-totals, etc. This also includes the writing of
trivial data validation programs, such as verifying that
a field contains only numeric information or that cer-
tain delimiters are properly balanced. The combination
of textual and numeric processing is invaluable here.

A second area of use is as a data transformer,
converting data from the form produced by one pro-
gram into that expected by another. The simplest
examples merely select fields, perhaps with rearrange-
ments.

5. Implementation

The actual implementation of awk uses the lan-
guage development tools available on the UNIX operat-
ing system. The grammar is specified with yacc ; [
yacc johnson cstr] the lexical analysis is done by lex ;
the regular expression recognizers are deterministic
finite automata constructed directly from the expres-
sions. An awk program is translated into a parse tree
which is then directly executed by a simple interpreter.

Awk was designed for ease of use rather than
processing speed; the delayed evaluation of variable
types and the necessity to break input into fields makes
high speed difficult to achieve in any case. Nonethe-
less, the program has not proven to be unworkably
slow.

Table I below shows the execution (user + sys-
tem) time on a PDP-11/70 of the UNIX programs wc ,
grep , egrep , fgrep , sed , lex , and awk on the follow-
ing simple tasks:

1. count the number of lines.

2. print all lines containing ‘‘doug’’.

3. print all lines containing ‘‘doug’’, ‘‘ken’’ or
‘‘dmr’’.

4. print the third field of each line.

5. print the third and second fields of each line, in
that order.

6. append all lines containing ‘‘doug’’, ‘‘ken’’, and
‘‘dmr’’ to files ‘‘jdoug’’, ‘‘jken’’, and ‘‘jdmr’’,
respectively.

7. print each line prefixed by ‘‘line-number : ’’.

8. sum the fourth column of a table.

The program wc merely counts words, lines and char-
acters in its input; we have already mentioned the oth-
ers. In all cases the input was a file containing 10,000
lines as created by the command ls �l ; each line has the
form

�rw�rw�rw� 1 ava 123 Oct 15 17:05 xxx

The total length of this input is 452,960 characters.
Times for lex do not include compile or load.

As might be expected, awk is not as fast as the
specialized tools wc , sed , or the programs in the grep
family, but is faster than the more general tool lex . In

all cases, the tasks were about as easy to express as
awk programs as programs in these other languages;
tasks involving fields were considerably easier to
express as awk programs. Some of the test programs
are shown in awk , sed and lex . [$LIST$]

- 7 -

Task
Program 1 2 3 4 5 6 7 8__

wc 8.6
grep 11.7 13.1
egrep 6.2 11.5 11.6
fgrep 7.7 13.8 16.1
sed 10.2 11.6 15.8 29.0 30.5 16.1
lex 65.1 150.1 144.2 67.7 70.3 104.0 81.7 92.8
awk 15.0 25.6 29.9 33.3 38.9 46.4 71.4 31.1__


























































































Table I. Execution Times of Programs. (Times are in sec.)

The programs for some of these jobs are shown
below. The lex programs are generally too long to
show.

AWK:

1. END {print NR}

2. /doug/

3. /ken|doug|dmr/

4. {print $3}

5. {print $3, $2}

6. /ken/ {print >"jken"}
/doug/ {print >"jdoug"}
/dmr/ {print >"jdmr"}

7. {print NR ": " $0}

8. {sum = sum + $4}
END {print sum}

SED:

1. $=

2. /doug/p

3. /doug/p
/doug/d
/ken/p
/ken/d
/dmr/p
/dmr/d

4. /[ˆ]� []�[ˆ]� []�\([ˆ]�\) .�/s//\1/p

5. /[ˆ]� []�\([ˆ]�\) []�\([ˆ]�\) .�/s//\2 \1/p

6. /ken/w jken
/doug/w jdoug
/dmr/w jdmr

LEX:

1. %{
int i;
%}
%%
\n i++;
. ;
%%
yywrap() {

printf("%d\n", i);
}

2. %%
ˆ.�doug.�$ printf("%s\n", yytext);
. ;
\n ;

