Europiisches Patentamt

a, European Patent Office

Office européen des brevets

(11) Publication number : 0 466 486 A2

@) EUROPEAN PATENT APPLICATION

@ Application number : 91306291.5

@2 Date of filing : 11.07.91

@D Int. C1.°: GOGF 9/44, GOGF 9/46

Priority : 17.05.91 US 702651
11.07.90 US 551218

Date of publication of application :
15.01.92 Bulletin 92/03

Designated Contracting States :
DEESFRGBIT

Applicant : AMERICAN TELEPHONE AND
TELEGRAPH COMPANY

550 Madison Avenue

New York, NY 10022 (US)

Inventor ;: Pike, Robert Charles

18 Elizabeth Street

Basking Ridge, New Jersey 07920 (US)
Inventor : Thompson, Kenneth L.

336 Ridge Road

Watchung, New Jersey 07060 (US)

Representative : Watts, Christopher Malcolm
Kelway et al
AT&T (UK) LTD. AT&T Intellectual Property
Division 5 Mornington Road
Woodford Green Essex 1G8 OTU (GB)

EP 0 466 486 A2

@ Distributed computing system.

@ An operating system which is particularly
adapted to heterogenous distributed systems.
Entities available to a process running in the
operating system are provided by services.
Each service models its entity as a set of files.
The entity is controlled by performing oper-
ations on the set of files provided by the entity.
Services other than those provided by the
operating system all employ the same protocol
specifying operations on files. The only require-
ment placed on a service by the operating
system is that it be able to accept and respond
to messages employing the protocol. The files
are named, and the operating system provides a
plurality of name spaces, relates each process
to one of the name spaces, and permits any
process to modify its name space or to create a
new name space. Services are disclosed which
provide each process using the service with its
own set of the service’s files and which provide
files belonging to one process’s namespace to
another process executing on a different pro-
cessor.

Jouve, 18, rue Saint-Denis, 75001 PARIS

1 EP 0 466 486 A2 2

Background of the Invention

Field of the Invention

The inventions disclosed herein relate generally
to computing systems and more specifically to distri-
buted computing systems, i.e., computing systems in
which components of the system are connected by
communications media.

Description of the Prior Art

Many of the entities available to a program
executing on a computer system have names, i.e.,
identifiers which are not adresses but which may
nevertheless be used by a program to locate the entity
specified by the identifier. The computer system’s
operating system includes components which permit
the user to name entities, which keep track of the rela-
tionships between names and entities, and which per-
mit the user to locate the entity by means of its name.
The set of names which a program may use to locate
entities is termed the name space in which the prog-
ram executes. The operating system determines how
the name space is organized. In some cases, the
name space is flat, that is, all names are on a single
level. In other cases, the operating system organizes
the names into hierarchies.

A problem in the design of distributed systems is
how to define the name space. One approach, exem-
plified in the Amoeba distributed system, Mullender,
etal., Amoeba-A Distributed Operating System for the
1990’s, IEEE Computer, May, 1990, is to simply
ignore the problem. In the Amoeba system, name
space definition is left completely to name space ser-
vers.

Where operating systems have defined name
spaces, several approaches have been taken. The
approaches are explained in more detail in Comer,
Droms, and Murtagh, An Experiental Implementation
of the Tilde Naming System, Computing Systems, vol.
3, no. 4, University of Califomia Press, Berkeley, CA,
1991, pp. 487-515. One approach is to include all of
the names in the distributed system in a single sys-
tem-wide hierarchy of names. A problem with this
approachg is the sheer size of the name space. The
problem of size has been dealt with by subdividing the
name space. One way of subdividing the name space
is by processor or work station. Another way of sub-
dividing the name space is by user. Each user of the
system has its own hierarchy of names which is again
a subset of the total name space of the system and
which may include names for entities anywhere in the
system.

Neither the subdivision by user nor the subdivi-
sion by processor deals with the fact that the entities
which execute programs in computer systems are
processes, and not users or machines. In all respects

10

18

20

25

30

35

40

45

50

55

but name space, the environment in which a program
executes is the environment of the process which
executes it. Thus, if two processes run in the same
name space and use the same name, the operating
system presumes that both are referring to the same
entity. This fact causes serious naming problems. For
example, if an entity, for example, a temporary file, is
truly relevant only to a single process, then the pro-
cess must create a name for the entity such that it is
unique within the name space. The need to create
such unique names and the complications flowing
from their use are avoided if the two processes have
different name spaces. The difficulties caused by the
lack of per-process name spaces are not limited to
distributed systems, but clearly become more severe
as the size of the name space in which the process is
running increases, and thus are larger in the larger
name spaces provided by distributed systems.

It is an object of the apparatus and methods des-
cribed herein to solve the problems described above,
as well as other problems of distributed computer sys-
tems and of computer systems generally. A multip-
rocess operating system incorporating one of the
inventions disclosed herein is claimed in claim 1; a
computing system incorporating another of the inven-
tions is claimed in claim 10; a method for altering the
manner in which input consisting of a sequence of
character codes is sent to a recipient thereof is
claimed in claim 19.

The above inventions and others will be made
clear to those of ordinary skill in the art upon perusal
of the following Detailed Description and Drawing,
wherein:

Brief Description of the Drawing

FIG. 1 is an overview of the per-process name
spaces provided by the operating system des-
cribed herein;

FIG. 2 is an overview of the mount service and
protocol services in the operating system;

FIG. 3 is a diagram of the CHANEL data structure;
FIG. 4 is a diagram of the data structures used to
locate open files;

FIG. 5 is a diagram of the data structures used to
send protocols to and receive protocols from pro-
tocol services;

FIG. 6 is a diagram of the file tree provided by the
root service and of the file tree after certain bind
and mount operations have been performed;
FIG. 7 is a diagram of the distributed system in
which the operating system of the present inven-
tion is implemented;

FIG. 8 is a diagram of the mount table of the pre-
sent invention;

FIG. 9 is a diagram of the mount table for the sec-
ond file tree of FIG. 6;

FIG. 10 is a flow chart of the namec function in a

3 EP 0 466 486 A2 4

preferred embodiment;

FIG. 11is aflow chart of the walk function in a pre-

ferred environment;

FIG. 12 is a flow chart of the mount function in a

preferred environment;

FIG. 13 is a diagram of the data structures used

to register a protocol service in a preferred embo-

diment;

FIG. 14 is an overview of a window service used

with the operating system of the present inven-

tion;

FIG. 15 is a diagram of the file tree provided by

the window service;

FIG. 16 is an overview of the structure of the win-

dow service;

FIG. 17 is a flow chart of the mkslave function

executed in the window service;

FIG. 18 is a diagram of the implementation of the

file tree provided by the window service;

FIG. 19 is a diagram of the window data structure

employed in the window service;

FIG. 20 is a diagram of the internal structure of a

portion of the window service;

FIG. 21 is a flow chart of the spawn function exec-

uted in the window service;

FIG. 22 is a diagram of certain parts of the window

data structure which are important to a preferred

embodiment of the hold mode;

FIG. 23 is flow charts of certain aspects of the pro-

cessing done for the hold mode in a preferred

embodiment;

FIG. 24 is an overview of the operation of the CPU

command;

FIG. 25 is a diagram showing the internal struc-

ture of the CPU service; and

FIG. 26 is a diagram showing data structures

used by the CPU service.

The reference numbers employed in the Detailed
Description have two parts: the rightmost two digits
are a number within a figure, and the remaining digits
are the figure number. Thus, an item identified by the
reference number 115 appears for the first time in FIG.
1.

Detailed Description

The following Detailed Description of a preferred
embodiment begins with an overview of the Plan 9
operating system in which the invention is embodied.
The overview is followed by additional material which
describes the following aspects of Plan 9 in more
detail: The manner in which Plan 9 creates a name
space for a process; The Plan 9 window system; and
The CPU command.

Overview of the Plan 9 Operating System: FIG. 7

Plan 9 is a general-purpose, multi-user, portable

10

18

20

25

30

35

40

45

50

55

distributed system implemented on a variety of com-
puters and networks.

Plan 9 is divided along lines of service function.
CPU servers concentrate computing power into large
(not overloaded) multiprocessors; file servers provide
repositories for storage; and terminals give each user
of the system a dedicated computer with bitmap
screen and mouse on which to run a window system.
The sharing of computing and file storage services
provides a sense of community for a group of prog-
rammers, amortises costs, and centralizes and hence
simplifies management and administration.

The pieces communicate by a single protocol,
built above a reliable data transport layer offered by
an appropriate network, that defines each service as
a rooted free of files. Even for services not usually
considered as files, the unified design permits some
noteworthy and profitable simplification. Each pro-
cess has alocal file name space that contains attach-
ments to all services the process is using and thereby
to the files in those services. One of the most import-
ant jobs of a terminal is to support its user's cus-
tomized view of the entire system as represented by
the services visible in the name space.

To be used effectively, the system requires a
CPU server, afile server, and a terminal; it is intended
to provide service at the level of a departmental com-
puter center or larger. The CPU server and file server
are large machines best housed in an air conditioned
machine room with conditioned power.

The following sections describe the basic compo-
nents of Plan 9, explain the name space and how it is
used, and offer some examples of unusual services
that illustrate how the ideas of Plan 9 can be applied
to a variety of problems.

CPU Servers

Several computers provide CPU service for Plan
9. The production CPU server is a Silicon Graphics
Power Series machine with four 25MHz MIPS proces-
sors, 128 megabytes of memory, no disk, and a 20
megabyte-per-second back-to-back DMA connection
to the file server. It also has Datakit and Ethernet con-
trollers to connect to terminals and non-Plan 9 sys-
tems. The operating system provides a conventional
view of processes, based on fork and exec system
calls, and of files, mostly determined by the remote file
server. Once a connection to the CPU server is
established, the user may begin typing commands to
a command interpreter in a conventional-looking envi-
ronment.

A multiprocessor CPU server has several advan-
tages. The most important is its ability to absorb load.
If the machine is not saturated (which can be
economically feasible for a multiprocessor) there is
usually a free processor ready to run a new process.
This is similar to the notion of free disk blocks in which

5 EP 0 466 486 A2 6

to store new files on a file system. The comparison
extends farther: just as one might buy a new disk
when a file system gets full, one may add processors
to a multiprocessor when the system gets busy, with-
out needing to replace or duplicate the entire system.
Of course, one may also add new CPU servers and
share the file servers.

The CPU server performs compilation, text pro-
cessing, and other applications. It has no local stor-
age; all the permanent files it accesses are provided
by remote servers. Transient parts of the name space,
such as the collected images of active processes or
services provided by user processes, may reside
locally but these disappear when the CPU server is
rebooted. Plan 9 CPU servers are as interchangeable
for their task-computation-as are ordinary terminals
for theirs.

File Servers

The Plan 9 file servers hold all permanent files.
The current server is another Silicon Graphics com-
puter with two processors, 64 megabytes of memory,
600 megabytes of magnetic disk, and a 300 gigabyte
jukebox of write-once optical disk (WORM). It con-
nects to Plan 9 CPU servers through 20 megabyte-
per-second DMA links, and to terminals and other
machines through conventional networks.

The file server presents to its clients a file system
rather than, say, an array of disks or blocks or files.
The files are named by slash-separated components
that label branches of a tree, and may be addressed
for I/O at the byte level. The location of a file in the ser-
ver is invisible to the client. The file server actually
presents several file systems. One, the "main" sys-
tem, is used as the file system for most clients. Other
systems provide less generally-used data for private
applications.

Terminals

The standard terminal for Plan 9 is termed herein
a Gnot (with silent’G’). The Gnot is a locally-designed
machine of which several hundred have been man-
ufactured. The terminal’s hardware is reminiscent of
a diskless workstation: 4 or 8 megabytes of memory,
a 25MHz 68020 processor, a 1024x1024 pixel display
with two bits per pixel, akeyboard, and a mouse. It has
no external storage and no expansion bus; it is a ter-
minal, not a workstation. A 2 megabit per second
packet-switched distribution network connects the
terminals to the CPU and file servers. Although the
bandwidth is low for applications such as compilation,
it is more than adequate for the terminal’s intended
purpose: to provide a window system, that is, a mul-
tiplexed interface to the rest of Plan 9.

Unlike a workstation, the Gnot does not handle
compilation; that is done by the CPU server. The ter-

10

18

20

25

30

35

40

45

50

55

minal runs a version of the CPU server’s operating
system, configured for a single, smaller processor
with support for bitmap graphics, and uses that to run
programs such as a window system and a text editor.
Files are provided by the standard file server over the
terminal’s network connection.

Just like old character terminals, all Gnots are
equivalent, as they have no private storage either
locally or on the file server. They are inexpensive
enough that every member of a research center can
have two: one at work and one at home. A person
working on a Gnot at home sees exactly the same
system as at work, as all the files and computing
resources remain at work where they can be shared
and maintained effectively.

Networks

Plan 9 has a variety of networks that connect the
components. CPU servers and file servers communi-
cate over back-to-back DMA controllers. That is only
practical for the scale of, say, a computer center or
departmental computing resource. More distant
machines are connected by traditional networks such
as Ethernet or Datakit. A terminal or CPU server may
use a remote file server completely transparently
except for performance considerations. As the Datakit
network spans the country, Plan 9 systems can be
assembled on a large scale. To keep their cost down,
Gnots employ an inexpensive network that uses stan-
dard telephone wire and a single-chip interface. (The
throughput is respectable, about 120 kilobytes per
second.) Since the terminal only mediates communi-
cation-it instructs the CPU server to connect to the file
server but does not participate in the resulting com-
munication -the relatively low bandwidth to the termi-
nal does not affect the overall performance of the
system.

FIG. 7 shows the components and topclogy of
Plan 9. Plan 9 system 701 consists of file servers 705,
CPUs 703, and Gnots 711. Clusters 717 of CPUs 703
and file servers 705 and clusters 719 of Gnots 711 are
connected by a nationwide long-haul communications
network 715; Gnots 711 within a cluster 719 are con-
nected by a distribution network 713 such as a LAN
and file servers 705 and CPUs 703 within a cluster
717 are connected by a high-speed DMA link 709.

Name Spaces

There are two kinds of name space in Plan 9: the
global space of the names of the vinous servers on the
network and the local space of files and servers vis-
ible to a process. Names of machines and services
connected to Datakit are hierarchical, for example
nj/mh/astro/helix, defining (roughly) the area, build-
ing, department, and machine in a department.
Because the network provides naming for its

7 EP 0 466 486 A2 8

machines, global naming issues need not be handled
directly by Plan 9. However one of Plan 9's fundamen-
tal operations is to attach network services to the local
name space on a per-process basis. This fine-grained
control of the local name space is used to address
issues of customizability, transparency, and
heterogeneity.

The protocol for communicating with Plan 9 ser-
vices is file-oriented; all services must implement afile
system. That is, each service, local or remote, is
arranged into a set of file-like objects collected into a
hierarchy called the name space of the server. For a
file server, this is a trivial requirement. Other services
must sometimes be more imaginative. For instance, a
printing service might be implemented as a directory
in which processes create files to be printed. Other
examples are described in the following sections; for
the moment, consider just a set of ordinary file servers
distributed around the network.

When a program calls a Plan 9 service (using
mechanisms inherent in the network and outside Plan
9 itself) the program is connected to the root of the
name space of the service. Using the protocol, usually
as mediated by the local operating system into a set
of file-oriented system calls, the program accesses
the service by opening, creating, removing, reading,
and writing files in the name space.

>From the set of services available on the net-
work, a user of Plan 9 selects those desired: a file ser-
ver where personal files reside, perhaps other file
servers where data is kept, or a departmental file ser-
ver where the software for a group project is being
written. The name spaces of these vinous services
are collected and joined to the user's own private
name space by a fundamental Plan 9 operator, called
attach, that joins a service’s name space to a user’s.
The user's name space is formed by the union of the
spaces of the services being used. The local name
space is assembled by the local operating system for
each user, typically by the terminal. The name space
is modifiable on a per-process level, although in prac-
tice the name space is assembled at log-in time and
shared by all that user’s processes.

To log in to the system, a user sits at a terminal
and instructs it which file server to connectto. The ter-
minal calls the server, authenticates the user (see
below), and loads the operating system from the ser-
ver. It then reads afile, called the profile, in the user's
personal directory. The profile contains commands
that define what services are to be used by default and
where in the local name space they are to be
attached. For example, the main file server to be used
is attached to the root of the local name space, /, and
the process file system is attached to the direc-
tory /proc. The profile then typically starts the window
system.

Within each window in the window system runs a
command interpreter that may be used to execute

10

18

20

25

30

35

40

45

50

55

commands locally, using file names interpreted in the
name space assembled by the profile. For com-
putation-intensive applications such as compilation,
the user runs a command cpu that selects (automati-
cally or by name) a CPU server to run commands.
After typing cpu, the user sees a regular prompt from
the command interpreter. But that command interpre-
ter is running on the CPU server in the same name
space-even the same current directory-as the cpu
command itself. The terminal exports a description of
the name space to the CPU server, which then
assembles an identical name space, so the cus-
tomized view of the system assembled by the terminal
is the same as that seen on the CPU server. (A des-
cription of the name space is used rather than the
name space itself so the CPU server may use high-
speed links when possible rather than requiring inter-
vention by the terminal.) The cpu command affects
only the performance of subsequent commands; it
has nothing to do with the services available or how
they are accessed.

Although there is a large catalogue of services
available in Plan 9, including the service thatfinds ser-
vices, a few suffice to illustrate the usage and possibi-
lities of this design.

The Process File System

An example of a local service is the 'process file
system’, which permits examination and debugging of
executing processes through a file-oriented interface.

The root of the process file system is con-
ventionally attached to the directory /proc. (Conven-
tion is important in Plan 9; although the name space
may be assembled willy-nilly, many programs have
conventional names built in that require the name
space to have a certain form. It doesn’t matter which
server the program /bin/rc (the command interpreter)
comes from but it must have that name to be access-
ible by the commands that call on it.) After attachment,
the directory /proc itself contains one subdirectory for
each local process in the system, with name equal to
the numerical unique identifier of that process. (Pro-
cesses running on the remote CPU server may also
be made risible; this will be discussed below.) Each
subdirectory contains a set of files that implement the
view of that process. For example, /proc¢/77/mem con-
tains an image of the virtual memory of process num-
ber 77. Plan 9’s /proc implements other functions
through other files. Here is a list of the files provided
for each process. The virtual memory of the process
image. Offsets in the file correspond to virtual adres-
ses in the process. Control behaviour of the proces-
ses. Messages sent (by a write system call) to this file
cause the process to stop, terminate, resume execu-
tion, etc. The file from which the program originated.
This is typically used by a debugger to examine the
symbol table of the target process, but is in all res-

9 EP 0 466 486 A2 10

pects except name the original file; thus one may
type ’/proc/77/text’ to the command interpreter to
instantiate the program afresh. Any process with suit-
able permissions may write the note file of another
process to send it an asynchronous message for inter-
process communication. The system also uses this
file to send (poisoned) messages when a process
misbehaves, for example divides by zero. A fixed-for-
mat ASCII representation of the status of the process.
It includes the name of the file the process was exec-
uted from, the CPU time it has consumed, its current
state, etc.

The status file illustrates how heterogeneity and
portability can be handled by a file server model for
system functions. The command cat /proc/*/status
presents (readably but somewhat clumsily) the status
of all processes in the system; in fact the process
status command ps is just a reformatting of the ASCII
text so gathered. The source for ps is a page long and
is completely portable across machines. Even
when /proc contains files for processes on several
heterogeneous machines, the same implementation
works.

It is worth noting that the services /proc provides,
although varied, do not strain the notion of a process
as a file. For example, it is not possible to terminate
a process by attempting to remove its process file nor
is it possible to start a new process by creating a pro-
cess file. The files give an active view of the proces-
ses, but they do not literally represent them. This
distinction is important when designing services as
file systems.

The Window System

In Plan 9, user programs, as well as specialized
stand-alone servers, may provide file service. The
window system is an example of such a program; one
of Plan 9’s most unusual aspects is that the window
system is implemented as a user-level file server.

The window system is a server that presents a
file /dev/cons, similar to the /dev/tty or CON: of other
systems, to the client processes running in its win-
dows. Because it controls all I/O activities on that file,
it can arrange that each window’s group of processes
sees a private /dev/cons. When a new window is
made, the window system allocates a new /dev/cons
file, puts it in a new name space (otherwise the same
as its own) for the new client, and begins a client pro-
cess in that window. That process connects the stan-
dard input and output channels to /dev/cons using the
normal file opening system call and executes a com-
mand interpreter. When the command interpreter
prints a prompt, it will therefore be written to /dev/cons
and appear in the appropriate window.

It is instructive to compare this structure to other
operating systems. Most operating systems provide a
file like /dev/cons that is an alias for the terminal con-

10

18

20

25

30

35

40

45

50

55

nected to a process. A process that opens the special
file accesses the terminal it is running on without
knowing the terminal’s precise name. Since the alias
is usually provided by special arrangement in the
operating system, it can be difficult for a window sys-
tem to guarantee that its client processes can access
their window through this file. This issue is handled
easily in Plan 9 by inverting the problem. A set of pro-
cesses in a window shares a name space and in par-
ticular /dev/cons, so by multiplexing /dev/cons and
forcing all textual input and output to go through that
file the window system can simulate the expected
properties of the file.

CPU~Command

The cpu command connects from a terminal to a
CPU server using a full-duplex network connection
and runs a setup process there. The terminal and
CPU processes exchange information about the user
and name space, and then the terminal-resident pro-
cess becomes a user-level file server that makes the
terminal’s private files visible from the CPU server. In
a preferred embodiment, the CPU server builds the
name space by re-executing the user’s profile; in an
alternative embodiment, the name space will be
exported by a special terminal-resident server that
can be queried to recover the terminal’s name space.
The CPU process makes a few adjustments to the
name space, such as making the file /dev/cons on the
CPU server be the same file as on the terminal,
perhaps making both the local and remote processfile
system visible in /proc, and begins a command inter-
preter. The command interpreter then reads com-
mands from, and prints results on, its file /dev/cons,
which is connected through the terminal process to
the appropriate window (for example) on the terminal.
Graphics programs such as bitmap editors also may
be executed on the CPU server since their definition
is entirely based on I/O to files’served’by the terminal
for the CPU server. The connection to the CPU server
and back again is utterly transparent.

Overview of the Architecture of Plan 9 Services:
FIG. 1

As already mentioned Plan 9 services are
implemented as file systems, that is, the service
appears to a process executing on a computer with a
Plan 9 operating system as a set of files. The process
can obtain data from the service by performing file
read operations on "files" provided by the service and
can provide data to the service by performing file write
operations on the "files". As already explained in
detail with regard to the "file system" provided by the
process service, the service need not actually main-
tain files, but must merely be able to respond to
requests for file operations by a process as if it did

11 EP 0 466 486 A2 12

maintain them. For example, when a process reads a
"file" maintained by the service, the service must pro-
vide data to the process reading the "file".

Figure 1 provides an overview of the relationship
between Plan 9 services and processes. Service
architecture 101 shows how processes 102 employ
file system 109 to access one or more services 123.
The processes 102 may be executing either on a Gnot
711 or a CPU 703 and the services may be implemen-
ted either locally to the processor where process 102
is executing or in a remote device such as afile server
705.

As shown in FIG. 1, each service 123 provides
one or more trees of files 125 to the processes 102
which use the service. The trees of files are made up
of data files 131 and directory files 127 and 129. A
directory file is a file which contains a list of files. The
files listed in the directory files may be either directory
files or datafiles. As may be seen fromfile tree 125(a),
data files 131 B,C, and D are the "leaves" of the file
tree, while directory file 129 occupies the point where
the tree branches. At the base of the entire tree, there
is a single root directory file 127. Each file in a service
123 has a file name. In a preferred embodiment, the
file name is a character string.

A process 102 accesses a file in a service 123 by
means of calls to file system functions provided by the
Plan 9 operating system. There are two main classes
of functions: file locator functions (FL) 113, which
locate files, and file access functions (FA) 111, which
access files after they have been located by file
access functions 111. Calls to file locator functions
113 are represented by arrows 107, and those to file
access functions 111 are represented by arrows 105.

As mentioned above, each Plan 9 process 102
has a name space associated with it. A process 102’s
name space determines which files provided by ser-
vices 123 a process 102 may access. A process 102’s
name space in a preferred embodiment consists of a
single file tree 117 which is assembled out of file trees
125 and/or subtrees of those file trees. Thus name
space 115(0) maintained and used by file locator func-
tions 113 is the name space for process 102(a). As
may be seen from FIG. 1, process 102(a)'s name
space contains file tree 117(0) which includes 125(a)
from service 123(a) and file tree 125(k) from service
123(k), but does not include file tree 125(b) from ser-
vice 123(b). File tree 117(0) has been constructed by
making the directory file "X" in process 102’s file tree
117(0) equivalent to the root of tree 125(a) and mak-
ing the directory file "Y" in file tree 117(0) equivalent
to the root of file tree 125(k). How "X" and "Y" them-
selves came to be in name space 115(o) will be exp-
lained in detail later.

Within name space 115(0), a file may be located
by means of a path name. A path name is a list of file
names which includes the name of the file which is to
be located and the names of all of the directory files

10

18

20

25

30

35

40

45

50

55

between the point in the file tree from which the file is
being located to the file. The point in the file tree from
which the file is being located is termed the working
directory. Thus, if the working directory is the directory
file X, the pathname is A/C. The "/" character in A/C
serves to separate the names in the path name.
Additionally, any file may be located by specifying its
full path name, that is, the "/" character, representing
the root directory, the names of all of the directories
between the root directory and the file, and the name
of thefiles. The names of the files are again separated
by "/". Thus, the full path name of Thus, the complete
pathname for file C in name space 115(o) is /X/A/C.

In Plan 9, a number of processes 102 may share
a name space. The processes 102 sharing a name
space make up a process group 103; thus, the pro-
cesses in process group 103(o) share name space
115(0) defined by file tree 117(0), while the processes
in process group 103(z) share name space 115(z).
Processes are created in Plan 9 by means of the "fork"
system call. The newly-created process 102 remains
associated with the same name space 115 as the pro-
cess which made the "fork" system call and therefore
belongs to the same process group 103 as the pro-
cess 102 which made the fork system call. A new pro-
cess group 103 is established when a process 102
makes the "forkpgrp" system call. The call has a
single argument: a flag indicating whether the new
process group should receive a copy of process 102’s
old name space 105 or receive a minimal default
name space 105. Execution of the system call places
the process 102 making the system call in the new
process group. Once a new name space 115 has
been established for a process 102 by the forkpgrp
system call, changes in new name space 115 do not
affect the old name space 115 of process group 103
to which the process 102 making the forkpgrp system
call formerly belonged.

Any process 102 which belongs to a process
group 103 may modify the name space 115 for the
process group. To do so, the process uses one of two
name space modification functions. The first of these
is "bind", which makes a name which is already in the
name space equivalent to file specified by a new path
name. After the bind, references to the file specified
by the old path name will be interpreted as references
to the file specified by the new path name. For
example, a "bind ("/Y/H","IX/A")" function call in name
space 115(o) may be used to replace the subfree
whoserootis A in name space 115(0) with the subtree
whose root is H in that name space. After the bind, the
pathname /X/A/K will refer to the file K of subtree H.

The second operation is "mount", which makes a
name which is already in the name space equivalent
to the root of a service 123. As will be explained in
more detail later, the root of the service is represented
by a file descriptor, which is a small integer. Thus, the
directory name "X" of file tree 117(0) was made equiv-

13 EP 0 466 486 A2 14

alent to the root of file tree 125(a) of service 123(a) by
the mount function "mount (FD,"/X"). After the mount,
the pathname /X/A refers to file "A" in file tree 125(a).

A further refinement of "mount" and "bind" in Plan
9 is that three different kinds of relationships between
the pathnames or between the file descriptor and the
pathname may be specified. The first relationship is
replacement. If thatrelationship is specified, whatever
is referred to by the new name or the file descriptor
completely replaces whatever is referred to by the old
name. The second and third relationships establish
what is termed union directories. When a union direc-
tory is established, the old name and the new name
used in the bind function must both refer to directory
files and the old name in the mount command must
refer tp a directory file, while the file descriptor must
refer to the root of a file tree in a service 123. The
effect of the bind or mount is to establish a new direc-
tory which is the union of the files in the old and new
directory files. One relationship, before, establishes a
union directory in which the new directory is searched
before the old directory; the other relationship, after,
establishes a union directory in which the new direc-
tory is searched affer the old directory. Thus, the bind
command "bind("/Y/H","/X/A",BEFORE) establishes
a directory in which the files 1,J,K precede the files B
and C, and when file locator functions 113 respond to
the pathname /X/A/C, they will first search through the
directory H and then through the directory A. By thus
determining the order in which the locator functions
search through directories for a file, the union direc-
tories provide the same kind of control as is provided
by search lists in operating systems such as UNIX.

File locator functions 113 which locate files
instead of rearranging the name space take a path
name as an argument and return a file descriptor. In
this context, the file descriptoris a small integer which
is used in file access functions 111 to refe to the file.
The file locator functions 113 include "chdir", which
makes the directory file specified by the pathname
into the process 102’s working directory, and "open",
which opens the file specified by the pathname. Both
"chdir" and "open" return file descriptors for the work-
ing directory file and the opened file respectively.
Additionally, the "create" function works as does
"open", except that the file specified in the path name
is created. File access functions 105 then use the file
descriptor provided by the file locator functions to read
the file, write the file, set and obtain the file’s status,
and to close the file.

In architecture 101, file system 109 translates the
file access calls 105 and the file locator calls 107
made by a process 102 into service file operation
requests. Each service file operation request
requests a service 123 to perform an operation on a
file in one of its file trees 125. Again, there are two
classes of such requests: service file access
requests, indicated by arrow 119, and service file

10

18

20

25

30

35

40

45

50

55

locator requests, indicated by arrow 121. As will be
explained in more detail, requests 119 and 121 for
some services 123 take the form of function calls; for
other services 123, the requests take the form of file
protocols. In the case of the function calls, files are
represented by file names or file descriptors; in the
case of the file protocols, files are represented by file
names or file identifiers; for the purpose of the follow-
ing discussion, both file descriptors and file identifiers
will be subsumed in the term file specifiers.

In file system 109, a file descriptor employed by
a process 102 is associated with a gid, a file handle
provided by service 123. The association may be
either direct or indirect, by way of the association of a
file descriptor with a file identifier and the association
of the file identifier with the gid. When there is an
association between a file descriptor used by a pro-
cess 102 and a qid, the process 102 is said to have a
connection to the file represented by the qid. Simi-
larly, in service 123, the qid is associated with one or
more file specifiers. Any file system call 105 or 107
which results in a service file request having a file
specifier associated with a given gid will result in the
file operation being performed on the file identified by
the qid.

An advantage of representing a file by a name or
a file specifier in file system 109 but by a name or a
qid in services 123 is that different services can estab-
lish different relationships between file names and
qids. For example, in some services, such as the pro-
cess service explained above, it is advantageous for
the file names used by all processes to refer to a
single set of files; in other services, such as the 8.5
window service to be described in detail later, the file
names used by each process refer to a set of files
peculiar to that process. As a result, file names in
architecture 101 have properties analogous to those
of variables in programming languages such as C.
Some file names are like global static viable names:
as the global static viable name refers to the same
memory location in all code in which the viable name
appears, so file names like those provided by the pro-
cess service refer to the same files in all processes.
Other file names are like local viable names: as the
local viable name refers to a different memory location
in every invocation of a procedure, so file names like
those provided by the 8.5 server refer to different files
in each process. Wich properties a file name has is of
course determined by the service 123 which provides
the file. In analogy with the terminology used with vari-
ables, services 123 are said to provide instances of
their files; thus, the process service provides a single
instance of each of its files, and any process 102
which has a connection tc one of the files provided by
the service has access to the same file as all of the
other processes 102 which has a connection to that
file. The window service, on the other hand, provides
separate instances of the files in its file tree to each

15 EP 0 466 486 A2 16

process 102 which establishes a connection with the
root of the file tree; any process 102 which has a con-
nection with a file provided by the window service has
a connection to one of the multiple instances of that
file.

Each service 123 is able to handle the following
classes of service file locator requests 121: attach:
given afile specifier for the root of a file tree in a speci-
fied service 123, return a qid for the root to file system
109; walk: search a directory file specified by a file
specifier for a file having a given name, and if the file
is found, associate the file specifier with the qid for the
file and return the qid; create: make a new file in a
directory file specified by a file specifier, give the file
a specified name, associate the file specifier with the
gid for the new file; and return the qid; remove:
remove a file specified by a file specifier from the ser-
ver, disassociate the file specifier from the qid, and
return the name of the file being removed.

Each service 123 is further able to handle the fol-
lowing classes of service file access requests: open:
prepare afile specified by afile specifier for file access
operations and return the gid associated with the file
specifier; clone: given a first file specifier representing
a file and a second file specifier which does not yet
represent a file, associate the second file specifier
with the file associated with the first file specifier;,
read: given a file specifier, an offset in the file, and a
count, read the number of bytes specified in the count
beginning at the offset; write: given a file specifier, an
offset in the file, a count, and data, write the data into
the number of bytes specified in the count beginning
at the offset; clunk: given a file specifier, end the
association between the file specifier and the file. stat:
given a file specifier and information required by the
service to obtain file status information, return the
file’s status; wstat: given a file specifier and infor-
mation required by the service to change the file's
status, change the file’s status.

While all services 123 must implement the above
operations, in some cases, the operation may in fact
have no effect or produce an error. For example, if a
service 123 is a printer, and thus can implement only
write-only “files", a read operation will produce an
error.

Kernel Services and Protocol Services: FIG. 2

There are two types of services 123 in a preferred
embodiment of Plan 9. Kernel services are servicesin
which service file operation requests 205 and 207 are
implemented by means of calls to Plan 9 kernel func-
tions. Prorocol services are services in which service
file operation requests 205 and 207 are implemented
by means of the Plan 9 file protocol. In the protocol
services, each service file operation request is
initiated by a imessage transmitted for a process 102
to a protocol service. The protocol service replies to

10

18

20

25

30

35

40

45

50

55

the tmessage with a rmessage which contains infor-
mation returned from the protocol service to the pro-
cess. The tmessage and rmessage making up a
service file operation request for a protocol service
are termed a transaction. For example the service file
read operation request for a protocol service is aread
transaction which consists of the following read tmes-
sage and rmessage:
tread: type specifier, file identifier, tag, offset,
count
rread: type specifier, file identifier, tag, count,
data
The file identifier is associated with the file des-
criptor in file system 109 and with the qid in file system
109 and in the protocol service. The tread message
includes a type specifier indicating that the message
is a tread message, the file identifier, a tag identifying
the message, the offset in the file at which the read is
to begin, and the number of bytes. The rread message
includes a type specifier indicating that the message
is an rread message, the file identifer, another tag, the
count of bytes actually read, and the data itself. If the
read results in an error, protocol service 209 returns
an rerror message instead of the rread message. It
has the form:
rerror; type specifier, tag, error message string
Each protocol service 209 must be able to per-
form transactions corresponding to each of the ser-
vice file operation requests listed above. Since this is
all that is required of a protocol service 209, a protocol
service 209 may be implemented on a processor
which has an architecture completely different from
the architecture of the processor upon which mount
service 203 is executing. All that is required to use a
protocol service 209 is a connection to the protocol
service 209 over which the protocols may be transmit-
ted and received. Further, in a preferred emboiment,
the data sent and returned in the protocols has pre-
determined formats which are used by all protocol
services 209 which provide a given file tree. Thus, a
process 102 may use any protocol service which pro-
vides the given file tree, regardless of the type of
machine the process 102 is executing on and the type
of machine the protocol service 209 is executing on.
FIG. 2 shows the relationship between protocol
services and the rest of architecture 101. As shown in
the figure, protocol services (PS) 209 perform file
locator transactions 205 and file access transactions
207 involving file protocols corresponding to the ser-
vice file locator requests and service file access
requests explained above. A special kernel service,
mount service 203, receives function calls 217 speci-
fying service file locator requests and function calls
219 specifying service file access requests from file
system 109. Mount service 203 then responds to the
function calls by performing corresponding transac-
tions with protocol services 209. To perform the trans-
actions, mount service 203 employs a number of

17 EP 0 466 486 A2 18

communications services 215. There are two types of
such communications services: network communi-
cations services (NS) 214 and inter-process com-
munications services (IPS) 216. Network
communications services employ networks to com-
municate with remote protocol servers 213 which are
connected via the networks to the CPU upon which
process 102 is executed. Inter-process communi-
cations services 216 employ an interprocess com-
munications system to communicate with local
protocol servers 211. In a preferred embodiment, the
interprocess communications system employed by
IPS 216 is a pipe system like that in the UNIX operat-
ing system. When a communications service 215 is
connected to a protocol server 209, it is represented
by a file descriptor. It is these file descriptors which
are employed in the "mount” system call.

As may be seen by the reference numbers in
parentheses, network communications services 215
may emply distribution network 713, long haul net-
work 715, and DMA network 705 of FIG. 7 and the
remote protocol services 213 may include one or
more file services 705. Local protocol services 211
may be devices such as the 8.5 services for GNOT
711 or even other processes 102 which communicate
with the given process 102 by means of interprocess
communications facilities. As indicated above, the
distinction between a protocol service 209 and a ker-
nel service like mount service 203 is not location, but
merely that protocol service 209 performs transac-
tions with mount service 203. As will be seen in detail
in the following description of the 8.5 service, an
advantage of this characteristic of protocol services
209 is that the same protocol service 209 may be used
by both a process 102 running on a local processor
and a process 102 running on a remote processor
such as CPU 703 of FIG. 7.

Implementing File Operations in Plan 9

The following will discuss the implementation of
file operations in Plan 9, beginning with the data struc-
tures used to represent files and relate them to pro-
cesses 102 and services 123, continuing with the data
structures used to represent process name space
115, and ending with examples of certain typical file
operations.

Representing A Connection between a Process
102 and a File: FIGs. 3-5

Any file to which a process 102 has a connection
is represented by a channel data structure. At a mini-
mum, the channel data structure for afile specifies the
service 123 which is providing the file and associates
the gid provided by service 123 with the file descriptor
which process 102 uses to refer to the file. If service
123 is a protocol service 209, the channel frther

10

18

20

25

30

35

40

45

50

55

10

associates the file identifier used for the file in the file
protocols and a protocol channel for the file protocols
with the file descriptor.

Figure 3 is a diagram of the channel data struc-
ture. Channel data structure 301 has the following
components: lock 303, which bars more than one pro-
cess from having access to channel 301 at the same
time; reference count (ref) 307, which indicates
whether the channel is pointed to by other kernel data
structures; next/offset field 309: when channel 301 is
not in use, it is stored in a list of unused channels 301,
and in that case, the next/offset field points to the next
unused channel 301; when the file represented by
channel 301 is being accessed, next/offset specifies
the current offset into the file. Kernel service infor-
mation (KSINFO) 311: The next two fields contain
information which specifies the kernel service which
provides the file represented by the channel 301; type
313: this field specifies the kernel service by means
of which the file represented by the channel 301 is
accessed; for protocol services 209, type field 313
specifies mount service 203; device (dev) 315: this
field specifies a specific device represented by the
kernel service; in the case of mount service 203, the
device field 315 specifies the protocol service 209
which provides the file represented by channel 301;
Access information (AINFO) 317: the next three fields
contain information needed to perform file accesses;
mode 319 indicates how the file represented by the
channel may be accessed; flag 319 contains status
information about the file; gid 323 is the qid which the
service which provides the file has assigned to the file;
Mount Information (MINFO) 325 indicates where
information concerning binds and mounts affecting
the pathname of the file represented by the channel
301 may be found; mountptr 327 is a pointer to a data
structure from which the information concerning the
binds and mounts may be found; mountid 329 is an
identifier for the data structure pointed to by mountptr
327, file identifier (FID) 331 is the file identifier which
mount service 203 provides to protocol service 209
providing the file represented by channel 301 and
which protocol service 209 associates with qid 323 for
the file as long as the file is connected; in a preferred
embodiment, file identifier 331 is set to a unique value
for each channel 301 when the channel 301 is
created; auxiliary information 333 is information
whose meaning depends on device type 313; protocol
service information (PSINFO) 335 is information indi-
cating how file protocols may be sent to the protocol
service providing the file represented by the channel;
protocol channel (PCHAN) 337 is a pointer to a chan-
nel structure 301 which represents the communi-
cations service 215 used for transactions with the file
represented by the present channel structure; mqid
339 s the qid of the root directory of the file tree in the
protocol service which contains the file represented
by the channel 301.

19 EP 0 466 486 A2 20

Each process 102 is associated with a set of files
with which it has connections. The set of files may
include files with which connections were established
by ancestors of process 102 and which were "inher-
ited" by process 102 when it was created by the “fork"
system call’ and files with which the connections were
established by process 102 itself. The association is
achieved by means of the data structures 401 shown
in FIG. 4. Data structures 401 further associate each
file in the set with the file descriptor which process 102
uses to refer to the file.

The starting point for access to data structures
401 is user data structure 403 for process 102. A
pointer 411 in user data structure 403 points to file
descriptor array (FDA) 413. File descriptor array 413
is an array of pointers 423 to channels 401 which is
indexed by file decriptor (FD) 417. If a file belongs to
the set of files connected to process 102, the entry
(FDAE) 415 in array 413 corresponding to the file des-
criptor for the file will contain a pointer 423 to a chan-
nel structure 301 for the file. Such channel structures
appear in FIG. 4 as file channel structures 419. There
is a set 421 of such file channels 419 corresponding
to the set of files with which process 102 is connected.
In a preferred embodiment, file descriptor array 413
has 100 elements, and consequently, each process
102 may be connected to up to 100 files.

As previously indicated, file locator functions
such as "bind", "mount", "chdir", or "open" take a path
name as an argument and return the file descriptor
417 for the file. As will be explained in more detail
below, access to file channels 419 for purposes of
path name interpretation is provided by a pointer 407
in user structure 403 to file channel 419 for the root of
process 102's file tree and another pointer 409 to file
channel 419 for process 102's working directory.
Another component of user 403 which is employed in
path name interpretation is element (ELEM) 405,
which contains the name in the list of names making
up the pathname which is currently being interpreted.

When the file represented by file channel 419 is
provided by a protocol service 209, file channel 419
is associated with a protocol channel which repre-
sents a connection via a communications service with
a protocol service 209. Protocol channels are also
implemented using channel structurs 301. In a chan-
nel structure 301 serving as a protocol channel, TYPE
field 313 specifies either inter-process communi-
cations services 216 or network services 214 (in a
preferred embodiment, a pipe service or a DATAKIT
network communications service). Fields 327, 329,
and 337 have no meaning in a protocol channel.
When the connection represented by the protocol
channel is opened by a process 102, a pointer to the
protocol channel is placed in file descriptor array 413
for the process 102 and the protocol channel receives
the corresponding file descriptor. A connection to a
local protocol service by means of a pipe is opened

10

18

20

25

30

35

40

45

50

55

1"

when the pipe system call creating the pipe is exec-
uted by the process 102, and a connection to a remote
protocol service 209 by means of a DATAKIT connec-
tion is opened when the file representing the remote
protocol service 209 in the srv service is opened.

FIG. 5 shows the data structures 501 employed
in a preferred embodiment to associate a file channel
419 with a protocol channel and with data structures
representing the tmessages and rmessages. As pre-
viously indicated, PCHAN field 337 in file channel 419
points to protocol channel 517, which is implemented
using a channel structure 301. The data structures
representing the tmessages and rmessages are
located using mount service array (MNTA) 502. There
is an entry (MNTE) 503 in the array for every file chan-
nel 419 which represents a file provided by a protocol
service 209. Each entry 503 includes an identifier and
two pointers: one to file channel 419 corresponding to
entry 503 and one to a mount service queue structure
(MNTQ) 509. File channel 419 in turn contains the
identifier for entry 503 as part of the information in dev
field 315. Mount service queue structure 509 contains
a pointer 511 to a data structure representing the pro-
cedure to which file channel 419 belongs, a pointer
515 to protocol channel 517 representing the connec-
tion to the protocol service 209 and file tree 125 con-
taining the file represented by file channel 419, and a
pointer 519 to a queue of messages 520. The mes-
sages in the queue are of course tmessages concern-
ing the file to protocol service 209 and rmessages
from protocol service 209. Mount service queue 509
thus associates the queue of messages with protocol
channel 517 and with process 102.

Each message 520 is made up at least of a mount
service header (MNTHDR) 521. Since there may be
more than one outstanding message for the combi-
nation of file and process represented by file channel
419, mount service header 521 contains pointers 527
and 529 linking header 521 to headers for other mes-
sages for the process-file combination represented by
channel 419. Mount service header 521 further con-
tains a pointer 526 to the process data structure for
the process to which file channel 419 belongs.

If the message 520 is a rmessage, the parts of the
message other than the data are placed in rhdr 525;
when the message 520 is a tmessage, the parts of the
received message other than the data are placed in
thdr 523; these fields thus contain the type of the mes-
sage, the file identifier which mount service 203 has
associated with the file, and other information as
required For example, if the message is a twrite mes-
sage, thdr 523 contains the message type, the file
identifier for the file, the number of bytes to be written,
and the offset at which the write is to begin.
Additionally, thdr 523 and rhdr 525 contain pointers
531 to mount buffers 533 which contain any data sent
or received in the message.

A message 720 is transmitted by a function which

21 EP 0 466 486 A2 22

takes entry 503 corresponding to file channel 419 and
mount header 521 as arguments; the function uses
entry 503 to locate protocol channel 517, and mes-
sage 520 specified by mount header 521 is output to
the connection specified by protocol channel 517.
Upon transmission, the process 102 sending the mes-
sage waits for the reply. When the reply arrives, it is
placed in a message 520, the process is awakened,
and the message 520 is read by the process 102. In
a preferred embodiment, the tag in the rmessage is
used to locate the proper mount header data structure
521. Functions in Plan 9 which must locate a structure
501 for a given file channel 419 do so by working
through mount service array 502 until they find an
entry 503 which contains a pointer 505 to the given file
channel 419; the file channel is identifiable by the fact
that its dev field 315 contains the identifier for the cor-
responding entry 503.

As is apparent from the foregoing discussion, the
data structures shown in FIGs. 3-5 permit a process
102 which has a file descriptor 417 for afile to perform
file access functions such as read and write on the file.
They are, however, not sufficient to perform file
locator functions, since these functions involve path
names as well as file descriptors.

Representing Name Space 115: FIGs. 6,8,9

As previously indicated, a new process 102’s
name space 115 is either inherited from the process
102’s parent or is built from a "stub" name space
which Plan 9 makes available to a process 102 which
does notinheritits parent’s name space. FIG. 6 shows
conceptually how a process 102’s name space 115 is
built from the "stub" name space. "Stub" name space
601 in FIG. 6 is provided by the root service, a kernel
service which provides a root directory 603 with a
single level of "files". Root directory 603 and files 605
to 615 serve only as points to which the roots of trees
125 belonging to other services 123 may be bound. In
a preferred embodiment, the set of files 605 through
615 serves to divide up the kinds of services by func-
tion. The file names correspond to functions as fol-
lows: dev 805 is the primary location at which services
are bound. Services which provide 1/O functions and
other services having miscellaneous functions are all
bound to dev 605; boot 607 is the location at which the
service which boots the CPU upon which Plan 9 is
executed is bound; fd 609 is the location at which the
service which provides duplicate file descriptors for a
procees’s connected files is bound; proc 610 is the
location at which the service which provides infor-
mation about Plan 9 processes is bound; env 611 is
the location at which the service which provides
environmental files for a process 102 is bound. These
environmental files perform the same functions as the
UNIX environmental variables; bin 613 is the location
at which the service which contains files of programs

10

18

20

25

30

35

40

45

50

55

12

executed by process 102 is bound; and srv 615 is the
location at which the service is bound which provides
files representing protocol channels 517 for the pro-
tocol servers 209 avariable to process 102.

Plan 9 provides a set of built-in services which
can be bound to the file names in stub tree 601; some
of the services may only be bound by Plan 9 kernel
functions executed by process 102; others may be
bound by any function executed by process 102. In
Plan 9 path names, the names of the built-in services
are preceded by the "#" character. The built-in ser-
vices which may be bound only by kernel functions
are the following: #/: the kernel root service which pro-
vides stub tree 601; #: the kernel pipe service, which
provides UNIX-style pipes for interprocess communi-
cation; and #M: mount service 603, which handles
transactions with protocol servers 209.

The kernel binds the root service to the root of
process 102’s name space.

The built-in services which may be bound by any
function executed by the process 102 include: #b: the
boot service. The service has files which, when writ-
ten to, cause the kernel to branch to a given adress
and which permits the kernel to write to a given loca-
tion in virtual memory. The boot service is generally
bound to boot 607; #b: the bit service. The service has
files which represent a bit-mapped screen and a
mouse. The bit service is generally bound to dev 605;
#c: the console service. The service has files which
represent a system console. The console service is
generally bound to dev 605; #d: the duplicate service.
The files provided by the service have names which
are the file descriptors for connected files belonging
to the process 102. The duplicate service is generally
bound to fd 609; #e: the environment service. The files
provided by the service are generally bound to env
611; #kname: the datakit service. The files provided
by the service represent conversations on the datakit
hardware represented by name. The service is gen-
erally bound to dev 605; #: the process service des-
cribed in the general overview; it is generally bound
to proc 610; and #s: the service registry service. The
files provided by the service represent already-open
protocol channels 517 which are connected to pro-
tocol services 209.

In a preferred embodiment of plan 9, when a pro-
cess 102 which has not inherited its name space 115
begins running on a Gnot 711, the Plan 9 kernel
executing on the Gnot 711 performs bind operations
which give its name space 115 the form shown as tree
617. Where a name in tree 809 has had a service
bound to it, that fact is indicated by "=" followed by the
name of the service; if the bind operation created a
union directory, that fact is indicated by listing the
components of the union directory in parentheses fol-
lowing the "=". The list is in the order in which the com-

23 EP 0 466 486 A2 24

ponents will be searched. Tree 617 has been pro-
duced by the following sequence of bind and mount
operations: bind ("#","/", MREPL), which binds the tree
provided by the root service to the "/" representing the
root in the path names interpreted by process 102;
references to "/ are now interpreted as references to
/" 603; mount (FD,"/",MAFTER,"), which mounts a
protocol channel 517 belonging to mount service 203
on "(’, and thereby creates a union directory consist-
ing of the files accessible from the root of the root ser-
vice and the root of the protocol service 209
represented by protocol channel 517. In Plan 9, that
protocol service 209 provides a default file tree 125in
a default file server 705. bind ("/68020/ bin", "/bin",
MREPL), which binds the tree whose root is the direc-
tory /68020/bin in default file tree 125 to the name bin
613 in stub file tree 601. The directory /68020/bin con-
tains executable code for Gnot 711, which in a prefer-
red embodiment has a Motorola 68020 microp-
rocessor, bind (“/lib/rc","/bin",MAFTER), which binds
the tree whose root is the directory /lib/rc in default
tree 125 to the name bin 613. Since /68020/bin has
already been bound to bin 613 and MAFTER whas
specified, the result is a union directory in which the
directory /68020/bin will be searched before the direc-
tory /lib/rc. bind ("#c","/dev",MREPL), which binds the
tree provided by the console service #c to the name
dev 605; and bind ("#d","/fd",MREPL), which binds
the tree provided by the duplicate service #d to the
name fd in stub tree 601.

As a result of these bindings, process 102 can
refer to a file called "cc" in the directory /68020/bin of
the protocol service 209 to which #Ml is connected by
the path name "/bin/cc" and can refer to a file called
"pwd" in /lib/irc of that same protocol service by the
path name "/bin/pwd", unless, of course, there is afile
"pwd" in /68020/bin. Similarly, the file "pid" provided
by the #c service may be referred to by the path name
"Idev/pid" and the file "0" provided by the service #d
may be referred to by the path name "/fd/0".

As is apparent from the foregoing, name space
115 for a Plan 9 process 102 must contain a record of
all of the bind and mount operations which have been
performed on names in name space 115. That record
is termed herein a mount table. The mount table of the
preferred embodiment takes advantage of the fact
that a file channel 419 for a file implicitly represents
the path name for the file. Because this is the case, a
record of the bind and mount operations may be made
by establishing relationships between the file chan-
nels 419 representing the files represented by the old
pathnames employed in the bind operations or mount
operations and the file channels 419 representing the
files specified by the new path names employed in the
bind operations or the file channels 419 correspond-
ing to the file descriptors employed in the mount oper-
ations. Of course, all of these file channels 419
represent files connected to some process 102 in a

10

18

20

25

30

35

40

45

50

55

13

process group 103 from which the current process
group 103 inherited its name space or by some pro-
cess 102 in the current process group 103.

FIG. 8 shows a portion of mount table (MT) 801
as it is implemented in a preferred embodiment. The
components of mount table 801 are located from
mount table array 802, which in turn is located from
user data structure 403. As shown in FIG. 8, user
structure 403 includes a pointer 824 to process
(PROC) data structure 825. Each process 102 has a
user structure 403 and a process data structure 825.
Pointer 824 is user structure 403 points to that pro-
cess 102’s process data structure. Process data
structure 825 is further pointed to by pointer 511 in
mount service queue structure 509 and itself contains
a pointer to process group (PRGRP) structure 827,
which represents the process group 103 to which pro-
cess 102 belongs. Process group structure 827, fin-
ally, contains a pointer 829 to mount table array 802,
and thereby permits location of mount table 801 for
process 102 to which user structure 403 belongs.

Mount table array 802 contains an element (MTE)
803 for each old path name to which a new path name
or file descriptor has been bound A given mount table
entry 803 contains two pointers. Pointer 805 is to afile
channel data structure 419 which represents the file
specified by the old path name. In the context of
mount table 801, such data structures 419 are termed
left-hand channels (LCHAN) 802. Pointer 807 is to a
mount structure 809. Each mount structure 809 rep-
resents the results of one bind or mount operation.
The contents of a mount structure 809 include the fol-
lowing: reference field (REF) 811: This indicates
whether left-hand channels other than the one poin-
ted to by mount table entry 803 are using the mount
structure; termination field 813: this indicates whether
mount structure 809 is the last in a list of mount struc-
tures 809 which define a union directory; mount iden-
tifier field 815: this is a unique identifier for this mount
structure 809 and thus for the results of the bind or
mount operation represented by mount structure 809;
pointer 817: if mount structure 809 is part of a list of
mount structures 809 defining a union directory and is
not the last mount structure 809 on the list, pointer 817
points to the next mount structure on the list; pointer
819: this pointer points to afile channel 419 which rep-
resents the file identified by the new path name (or in
the case of mount, by the file descriptor); in the mount
table context, such a file channel is termed a right-
hand channel (RCHAN) 804.

As may be seen by the foregoing, each mount
table entry 803 establishes a relationship between a
left-hand channel 802 and one or more right-hand
channels 804. Additionally, in any file channel 419
which represents a file whose path name’s meaning
has been altered because of a mount or bind oper-
ation, mount ptr field 327 points to mount structure
809 representing the mount or bind operation and

25 EP 0 466 486 A2 26

mount identifier field 329 contains the mount identifier
815 for that mount structure 809. Furthermore, any file
channel 419 which represents afile provided by a pro-
tocol server 209 includes a pointer in field 337 to pro-
tocol channel 517 for the connection to the protocol
service 209 providing the file.

FIG. 8 also illustrates how mount table 801 per-
mits implementation of the replace, before, and after
options of the "mount" and "bind" functions. With the
replace option, the mount structure 809 which points
to right channel 804 representing the new path name
simply replaces any list of mount structures 809; the
before option adds the mount structure 809 to the
head of anly list of mount structures 809; an error
results if there is no list of mount structures 809. With
the after option, the mount structure 809 is added to
the end of the list; again, an error results if there is no
list. When a union directory is searched, the search
begins with the directory represented by right-hand
channel 804 pointed to by the first mount structure
809 in the list; the next directory to be searched is the
directory represented by the right-hand channel 804
pointed tc by the second mount structure 809 in the
list, and so forth. Thus, if left-hand channel 802(a) rep-
resents the path name /M and the right-hand channel
804(a) represents a first root directory from a service
123 bound to /M and the right hand channel 804(b)
represents a second root directory from a second ser-
vice 123 bound to /M, then a file locator function such
as "chdir("/M/.")" will result in a search for "O" first in
the root root directory and if it is not found there, then
in the second root directory.

As previously mentioned, a new name space 115
for a process 102 is created whenever the process
102 executes a "forkpgrp" system call; "forkpgrp"
takes a single argument; if the argument has any
value other than 0, the existing name space for the
process 102 executing forkgrp is not to be copied into
the new name space 115; if the argument has the
value 0, the existing name space is to becopied When
"forkgrp" is executed with a non-"0" argument, forkgrp
simply makes a new process group structure 827 and
a new mount table array 802 for process 102; the
mount table envies 803 are then created as required
for the bind and mount operations which define the
new name space 115. If forkpgrp is executed with an
"0" argument, mount table array envies 803 in the
mount table array 802 for the process 102 executing
the "forkpgrp" system call are copied into the new
mount table array 802; when this is done, ref field 307
in each left-hand channel 802 pointed to by a given
mount table entry 803 and ref field 811 in each mount
structure 809 pointed to by that entry is incremented.
As may be seen from the foregoing, the implemen-
tation of mount table 801 in a preferred embodiment
is such that the creation of a new name space 105 for
a process is a relatively efficient and inexpensive
operation.

10

18

20

25

30

35

40

45

50

55

14

FIG. 9 shows the entire mount table 901 for file
tree 617. In the figure, channel structures 301 are rep-
resented by long oblongs; the label on a channel
structure 301 indicates the path name of the file rep-
resented by the channel 301. The first mount array
entry 803(b) records the results of the bind and mount
operations on the root, "/". LCHAN 802(b) represent-
ing the root, "(’, is connected via entry 803(b) and two
mount structures 809(c) and 809(d) to two right-hand
channels, one, 804(c), for the root of the file tree pro-
vided by the kernel root service, and one, 804(d), for
the root of the file free provided by the protocol service
209 to which #M1 is connected. A mchan pointer 337
in right-hand channel 804(d) points to protocol chan-
nel 517 representing the connection to the root.

The second mount array entry 803(c) records the
results of the bind operations on#/bin, represented by
left-hand channel 802(c). Channel 802(c) is connec-
ted to two right-hand channels, 804(e), representing
#M1/68020/bin, and 804(f), representing #M1/lib/rc.
Since the files represented by the right-hand channels
804(d) and (e) are provided by the protocol service
209 to which #M1 is connected, both right-hand chan-
nels contain mchan pointers 337 to protocol channel
517 which provides the connection to service 209.
Further, the path name #/bin of the file represented by
left-hand channel 802(c) includes the path name #/.
That directory file is represented by right-hand chan-
nel 804(c), and consequently, left-hand channel
802(c)’s mount pointer field 327 contains a pointer to
mount structure 809(c) which points to right-hand
channel 804(c).

As may be seen from the remainder of mount
table 901, every file channel 419 in mount table 901
which represents a path name which includes a com-
ponent which is represented by a right-hand channel
804 includes a pointer in mount pointer field 327 to
mount structure 809 which points to the right-hand
channel 804 which represents the component. Thus,
left-hand channels 802(c), 802(d), and 802(e), all of
which represent files with path names including #/, all
point to mount structure 809(c), while right-hand
channels 804(e) and 804(f), both of which represent
files with path names including #M 1, all point to mount
structure 809(d). Of course, when mount pointer field
327 points to a mount structure 809, mount id field 329
in the channel 301 is set to the mount identifier for the
mount structure 809.

The remaining entries 803(d) and 803(e) record
bindings of built-in kernel services to the "stub" direc-
tories "dev" and "fd" provided by the kernel root ser-
vice #/. In these cases, each entry 803 relates the
left-hand channel 802 representing the stub directory
to the right-hand channel 804 representing the built-in
kernel service. Since the built-in kernel services are
not protocol services, the right-hand channels have
no pointers to protocol channels 517.

27 EP 0 466 486 A2 28

Resolving Path names in Name Space 115:
FIGs. 10 and 11

As already pointed out, mount table 801 takes
advantage of the fact that every Plan 9 file channel
419 implicitly represents the path name of the the file
represented by the file channel 419. When the Plan 9
operating system is presented with a path name in a
file locator function such as "bind", "mount", "chdir", or
"open", it resolves the path name by obtaining a file
channel 419 representing the file specified by the path
name and returning a pointer to the file channel 419.
Since a process 102’s file tree 117 is made up of file
trees provided by services 123, the resolution of a
path name involves both mount table 801 and the ser-
vice requests which each service 123 responds to.
The specific service requests are the walk service file
locator request and in some cases the attach service
file locator request.

The Plan 9 kernel function which resolves path
names is termed "namec" (for name to channel). A
flow chart for the function appears in FIG. 10. As
shown at call oval 1003, namec takes as arguments
a path name, a code for the kind of file access required
by the system call which uses namec, and a code indi-
cating how a file being opened by namec is to be
opened. namec returns a pointer to a channel. namec
handles the first character in the path name specially,
but otherwise treats the path name as a list of names
separated by "/" characters. Each of the names is ter-
med an element.

The first part of namec (1067) obtains a channel
301 which represents the point at which the path
name begins. The manner in which the channel is
obtained depends on how the path name begins.
There are three possibilities: If the path name is a full
path name, it begins with "/*; If the path name speci-
fies a file provided by a built-in kernel service and the
service has not yet been bound to another file name,
the path name begins with "#"; If the path name begins
at the working directory, the path name begins with a
file name.

If the path name begins with "/", branch y of deci-
sion block 1005 is taken and the contents of the file
channel 419 for the root are copied to a channel 301
“nchan" (1009). As previously indicated, the root file
channel 419 can be located from user data structure
403 for the process.

If the path name begins with anything else, the n
branch of block 1005 is taken and the first element is
then tested at block 1007 to determine whether it is
"#". If it is, an attach service file locator request is
executed by the kernel built-in service specified by the
character following the "#". The result of the attach
locator request is a channel 301 which represents the
root of a file tree 125 provided by the built-in service.
The manner in which a given service handles the
attach request depends of course on the service. For

10

18

20

25

30

35

40

45

50

55

15

example, the attach function for the root service
invokes a generic attach function, devattach, which
names the name of the built-in service as an argu-
ment, in this case, "/". devattach gets a new channel
data structure 301, sets qid field 323 to the value
specifying the root, and sets type field 315 to a value
derived from the "/* argument. If the first element is
neither "/" nor "#", the path name begins at the work-
ing directory, and as shown in block 1013, the file
channel 419 representing the working directory is
copied to nchan. That file channel can of course be
located from user data structure 403 for the process.

The next stage, indicated by 1069, is finding out
whether the path name for the file represented by
nchan has been used as the old path name in a bind
or mount function call. First, the next element in the
path name is obtained. The function that does this
sets the field ELEM 405 in user 403 to the file name
which is the next element. Thereupon, mount table
array 802 for the process group 103 is located from
user data structure 403 for process 102. The left-hand
channel 802 for each mount table entry 803 is com-
pared with nchan in turn, until one is found that is
"equal" to nchan. "Equal" in this contexts means that
the two channels 301 represent the same file in the
same service 123, i.e., that they have equal values in
their type fields 313, their dev fields 315, and their qid
fields 323.

If such a left-hand channel 802 is not found, the
n branch of decision block 1019 is taken; otherwise,
the y branch is taken, and the contents of right-hand
channel 804 pointed by by entry 803 whose left-hand
channel 802 is equal to nchan are copied to nchan
(1021); thereupon mountpfr field 327 in nchan is set
to point to mount 809 which points to right-hand chan-
nel 804 and mountid field 329 is set to the value of
mount 809’s mountid. Thus, if the path name has
been used as the old path name in a bind or mount
call, nchan now represents the file represented by
right-hand channel 804. Otherwise, it is unchanged.

Continuing with figure 10B, portion 1071 of
namec consists of a loop 1025 which examines each
remaining element in the path name. Each time
through the loop, a call to a "walk" kernel function is
made. The arguments used in the call are nchan, the
current element (block 1029), and a flag indicating
whether the current name can have a left-hand chan-
nel 802 representing its file (this is impossible only in
the case of kernel built-in service names). As will be
explained in more detail below, the walk function
returns a channel 301 which represents the file speci-
fied by the element. That channel, termed tchan in
FIG. 10, is assigned to nchan, as shown by block
1031; then, the next element is obtained from the path
name (block 1033). As before, ELEM field 405 in
USER structure 403 is set to the next element. When
the loop is finished, the last element of the path name
remains to be processed.

29 EP 0 466 486 A2 30

The manner in which the last element is proces-
sed depends on which system call invoked namec. If
it was a create system call, the last element repre-
sents the name of the new file; otherwise, it repre-
sents the file to be accessed. Which system call
invoked namec is indicated by the access mode argu-
ment, and as shown in decision block 1055, further
processing depends on that argument. For purposes
of the present discussion, it need only be noted, as
shown in block 1057, that when the access mode
argument indicates that a file is to be created, a create
service file request is made using the last element and
tchan, which at this point is a copy of the file channel
419 for the directory in which the new file is to be
created. tchan consequently contains values in its
type field 313 and its dev field 315 which specify the
service 123 which contains the directory and the gid
for the directory in its gid field 323. As a result of the
create service file request, the new file is created and
assigned the last element as its name and tchan’s gid
field is set to the qid of the new file (1057).

Otherwise, the last element represents the name
of a file which already exists. In this case, the walk
function is invoked again using the last element to
obtain tchan, which represents the file referred to by
the last element (1059). Thereupon, fields in tchan are
set as required by the access mode and open mode
arguments of namec (1061) and tchan is copied to
nchan (1063). As shown in return oval 1065, nchan is
themeturned as the channel 301 representing the file
specified in the path name argument.

FIG. 11 is a flow chart of the walk function. As is
apparent from start oval 1103 of FIG. 11, walk takes
a channel data structure 301, an element of a path
name, and a flag indicating whether a mount on the
element is legal. The channel data structure 301 rep-
resents a directory to be searche for a file haring the
element name. If the element name is found in the
directory or a directory which is unioned with the direc-
tory represented by the channel data structure, the
function returns a channel data structure 301 which
represents the file specified by the element of the path
name.

In overview, the algorithm is the following: First,
a walk file service request is made to the service
specified by type 313 and device 315 fields of channel
301 used as an argument. The walk file service
request includes the element used as an argument. If
the file service request succeeds, it returns a channel
301 for the file specified by the element; thereupon a
check is made of mount table 308 to determine
whether the channel 321 returned by the walk request
is a left-hand channel 802; if it is not, the channel
returned by the walk request is returned by the walk
function; if it is, the right-hand channel 804 corre-
sponding to the left-hand channel 802 is copied into
the channel 301 to be returned by the walk function
and the mount ptr and mountid fields of the channel

10

18

20

25

30

35

40

45

50

55

16

301 are set as required for the mount data structure
809 pointed to by the mount array element 803 which
points to left-hand channel 802.

The walk file service request does not succeed if
the file service cannot find a file having the name
specified by the element in the directory specified by
the channel. There are two reasons why this might be
the case: the directory has had another name bound
to it; or the file corresponding to the element does not
exist in the directory.

In the first case, mount ptr 327 and mount id 329
specify mount structure 809 created when the other
name was bound, and the walk service file locator
request is attempted again with the service specified
in right-hand channel 804 pointed to by mount struc-
ture 809. If the walk file service request,succeeds,
processing continues as indicated above. If it fails,
either of the above possibilities may again hold. As-
suming this time that the problem is that the file cor-
responding to the element does not exist in the
directory, there are still two possibilities: that the file
in fact does not exist, or that the directory which was
searched is part of a union directory and other direc-
tories which are part of the union directory remain to
be searched. If the file in fact does not exist, term field
813 in mount structure 809 for the directory which was
just searched will indicate that mount structure 809 is
the last one in the list of mount structures 809 making
up the union directory; if not, next field 817 in mount
structure 809 will point to the mount structure 809 for
the next directory in the union directory, and from that
next mount structure, the right-hand channel 804 to
be searched can be determined. In this case, the walk
service file locator request is repeated using the right-
hand channel 804 pointed to by the next mount struc-
ture.

In more detail, in block 1105, a flag first, indicating
that it is the first time the service file locator request
will be done, is set, and the channel provided as an
argument is copied into cchan. In block 1107, the walk
service file locator request is performed using cchan
and the element. The action which the service per-
forms in response to the request depends on the ser-
vice. Two examples may suffice here. The root
service responds to the walk request by determining
whether cchan has a special value in qgid field 323
which is reserved for the root of the root service and
if it does, whether the element is one of the names
which the root service provides as "stubs". If the latter
is the case, cchan’s qgid field 323 is set to the special
value reserved for that stub name; otherwise, the walk
service locator request fails.

Mount service 203 responds to the walk request
as follows: as previously mentioned, part of dev field
315 of channels 301 representing files provided by
protocol services 209 contains an identifier specifying
a mount service array entry 503. Using that identifier,
mount service 203 locates mount service queue 509

31 EP 0 466 486 A2 32

for the protocol channel 517 for the protocol service
209; allocates a mount header 521 for the tmessage
required for the walk service locator request, and
places the file identifier from the channel and the ele-
ment in the tmessage. If the protocol service 209 has
a file with the name specified by the element in the
directory specified by the file identifier from the chan-
nel, it returns an rmessage containing a qid for the file,
and that qgid is placed in qid field 323 of cchan.

If the walk request succeeds, flag 321 in cchan is
set to indicate that the channel 301 is not the result of
a mount or bind operation (1119). The next step is to
determine whether the walk request has been done
more than once (1121). If that is the case, the chan-
nel received as an argument will not be the one retur-
ned, and the channel received as an argument may be
closed (1123). The close operation decrements the
count in the channel’s ref field, and if the ref field then
has the value 0, sends a clunk service request to the
service indicated by the channel’s dev field 315 and
returns the channel structure 301 to the free list. If it's
still the first time that the walk request has been made,
that step is skipped. The next step (decision block
1133) is to determine whether cchan represents a
component of a pathname which may have another
component mounted on it. This is true for any compo-
nent other than "#" and is indicated by the "mountok"
argument of walk. If there can be no mounted compo-
nent, there is no need to look in mount table 801, and
cchan is returned as it is (1135). Otherwise, mount
table 801 is examined for a left-hand channel 802
which is equal to cchan, and if such a left-hand chan-
nel 802 is found, the value of right-hand channel 804
corresponding to left-hand channel 802 is copied into
cchan, along with the mount ptr and the mount iden-
tifier for mount structure 809 pointing to the right-hand
channel 804. cchan is the returned as thus modified
(blocks 1137 to 1143).

Returning to walk service request block 1107, if
the request fails, the first step is to determine whether
cchan is the result of a mount or bind request. If it is,
the search has failed and as may be seen at connec-
tor "B", the walk function returns 0, indicating failure
(oval 1149). As shown in blocks 1145 and 1147, if the
walk request has been done more than once, cchan
is closed. Next, the value in cchan’s mount ptr field
327 is used to locate a mount structure 809 (block
111). If the mount structure 809’s term field 813 indi-
cates that the mount structure is at the end of the list
of mount structures 809 defining a union directory, the
search has failed, and walk ends as shown at connec-
tor B. Otherwise, the pointer next 817 in the current
mount structure 809 is followed and the right-hand
channel 804 pointed to by the next mount structure
809 is copied into a temporary channel, tchan (block
1115). The mount ptr 327 field in tchan is then set to
point to the next mount structure (block 1125), tchan
is copied to cchan (1127), first is set to 0, and as

10

18

20

25

30

35

40

45

50

55

17

shown by the connector "D", the wak service request
in block 1107 is repeated. As indicated above, the
loop 1131 defined by connector D is repeated until
either the walk request in block 1107 succeeds or it is
clear that the file corresponding to the element has not
been found.

Implementing File Locator Operations

Once name resolution in Plan 9 is understood, the
implementation of file locator system calls such as
"open", "bind", and "mount" is straightforward. Begin-
ning with open, the system call takes a path name and
an integer specifying a mode of opening as argument
and returns a file descriptor 417 for the opened file.
The system call first locates an element 415 in file
descriptor array 413 which does not presently point to
a channel 301; the number of that element is the file
descriptor for the newly-opened file. Then the system
call invokes namec. The arguments are the path
name, an access made specifier specifying open, and
the mode of opening. As indicated above, namec
resolves the path name, specifies that the service
indicated by the path name performs an operation on
the file specified by the path name, and returns a
channel 301 with fields set such that the channel 301
is now a file channel 419 representing the file. The
open system call places a pointer to the file channel
419 in the file descriptor array element 415 specified
by the file descriptor and returns the file descriptor.

The "bind" system call in a preferred embodiment
takes as arguments a pointer to the new pathname, a
pointer to the old path name, and a flag indicating
whether the bind is being done with the replace, bef-
ore, or after options. It returns an integer which has
the value "1" if the bind succeeded and "0" if it did not.
The system call calls a kernel function called
"bindmount" which does both binds and mounts. A
flag provided by the "bind" or "mount" system call indi-
cates which is to be done. When a "bind" system call
is indicated, bindmount calls namec with the first path
name to obtain afirst channel 301 representing thefile
specified by the first path name. Then it calls namec
with the second path name to obtain a second chan-
nel 301 representing the file specified by the second
path name. The next step is to call a kernel mount
function. The function rearranges mount table 801 as
required for the bind operation.

FIG. 12 is a flow chart of the kernel mount func-
tion. As shown at oblong 1203, the function takes the
old channel, the new channel, and a flag as argu-
ments, and returns the mount id of mount structure
809 resulting from the bind or mount. The flag is set
from the options flag of the bind or mount system call.
In the present case, the actual argument for the old
channel is first channel 301, and the actual argument
for the new channel is second channel 301.

The first step in the algorithm is to determine

33 EP 0 466 486 A2 34

whether the bind or mount operation can be perfor-
med on the channels 301 received as arguments
(1205). The operation is not permitted if both channels
specify the same file (i.e., have the same qid 323) or
if the old channel represents a file which is not a direc-
tory and the flag specifies an option other than rep-
lace. When the operation is not permitted, an error
results, as indicated in 1207. The next step is to
search mounttable 801 as already described to deter-
mine whether old channel 301 is equal to a left-hand
channel 802 which is already in mount table 801. If it
is, no new mount table entry 803 is required and block
1211 can be skipped. If not, block 1211 obtains an
empty mount table entry 803 and sets pointer 805 in
that entry 803 to point to the old channel.

Next, flag field 321 in new channel 301 is set to
indicate CMOUNT, indicating that it is a right-hand
channel 804 (1213). Flag field 321 may also indicate
a CREATE option, which specifies that files may be
created in the directory represented by right-hand
channel 804. When that option is specified, flag field
321 in new channel 301 is set to indicate the CREATE
option as well as CMOUNT, (1215,1217). Thereupon,
the mount function gets a new mount structure 809 to
link the mount table entry for the left-hand channel
802 corresponding to the old channel with the right-
hand channel 804 being made from new channel 301.
Pointer 819 in the new mount structure is set to point
to new channel 301 (1219).

Following connector "A", it may be seen that the
next step is a switch statement 1221 which specifies
one of three paths, depending on whether the flag
argument indicates the replace, before, or after
option. With before path 1223, a check is made at
1221 to determine whether another directory has
already been bound to left-hand channel 802; if not,
no union directory is possible and the before option is
in error (1231). If such a directory already exists, pro-
cessing continues as for replace option 1225. In that
option, the new mount structure 809 is put at the head
of the list of mount structures 809 corresponding to
left-hand channel 802 equivalent to old channel 301
(1233). If replace option 1225 is being exercised, term
813 in the new mount structure is set to indicate the
end of the list (1234). In after option 1227, finally, a
check is again made at 1235 to determine whether a
union directory is possible, and if not, error 1237
results. Otherwise, as shown in block 1239, the new
mount structure 809 is put at the tail of the list of mount
structures 809. mount then returns mount identifier
815 belonging to the new mount structure 809. Con-
tinuing with bindmount, that function finishes by clos-
ing the old and new channels 301, returning
whichever of them was not added to the mount table
and is not otherwise in use to the list of free channels.

The system mount function call differs from the
system bind function call in that there is no new path
name argument. Instead, that argument is replaced

10

18

20

25

30

35

40

45

50

55

18

by an argument which is a file descriptor 417 which
represents an open protocol channel 517. The man-
ner in which such a file descriptor 417 is obtained will
be desribed in more detail below. Additionally, the
system mount function call includes an argument
which consists of data which is passed through to the
protocol service 209 being mounted. In response to
the flag, bindmount first uses file descriptor 417 and
file descriptor array 413 to locate the protocol channel
517 specified by the file descriptor argument.

Next, a mount service attach operation is perfor-
med using the protocol channel 517. The first thing
done in the attach operation is to locate an unused
mount service array element 503. That done, the
generic devattach operation previously described
above is performed, except that the argument used to
invoke it is "M", specifying mount service 203. devat-
tach returns a channel structure 301 with its type field
313 field set to specify mount service 203, and the
attach function for the mount service sets dev field
315 in the channel to the value of the identifier for the
unused mount service array element 503 and sets
pointer 505 in the unused element to point to the chan-
nel structure. Next, the protocol channel argument is
used to determine whether there is already a mes-
sage queue, represented by a mount serviced queue
structure 509, for the protocol channel 517 specified
by the argument. If there is not, one is allocated.
Thereupon, an attach tmessage is sent which con-
tains the file identifier for the channel 301 returned by
devattach and the argument which was to be passed
on to the protocol service 209. When the rmessage
returns, it contains a qid for the root of file tree 125 in
the protocol service 209. The qid is copied into the gid
field 323 and mqid field 339 of the channel 301 retur-
ned by devattach, and a pointer to protocol channel
517 to which the message queue belongs is copied to
pchan field 337. The channel resulting from the mount
service attach operation is then provided as the new
channel 301 argument to the mount function. When
mount is specified for the bindmount function,
bindmount finishes by closing protocol channel 517
from file descriptor array 413 and removing it from file
descriptor array 413.

Obtaining an Open Protocol Channel 517: FIG.
13

The arguments for the mount system call include
afile descriptor 417 for an open protocol channel 517.
The protocol channel 517 is a channel 301 which rep-
resents a file which is a connection to a protocol ser-
vice 209. In a preferred embodiment, the connection
may either be a file in a pipe by which a local protocol
service 211 sends and receives messages or a file
which represents a conversation via a communi-
cations system with a remote protocol service 213. In
a preferred embodiment, file descriptors for the files

35 EP 0 466 486 A2 36

in a pipe are provided by the "pipe" system call which
creates the pipe. File descriptors for files representing
a conversation via a communications system are
obtained as follows: first, a "dial" function is invoked.
The function returns the path name of the directory
which contains the file representing the conversation.
Then the path name of the file representing the con-
versation is used in an "open" function, and the open
function returns the file descriptor for the file repre-
senting the conversation.

A protocol channel 517 may be made available
for general use by processes 102 by registering the
protocol service 209 for which protocol channel 517
represents the connection in srv 615. As is the case
with all services, srv 615 presents the resources it
manages as files; consequently, to register a protocol
service 209 in srv 615, one creates a file representing
the protocol service 209 in the directory represented
by srv and then writes the file descriptor for the file rep-
resenting the connection to the created file.

Of course, the invocation of the system create
function results in a create file request to srv, and srv
responds to the create request by ming a directory
entry for the file and placing a gid for the directory
entry in field 323 of the channel 301 for the created file
and a pointer to the directory entry in auxiliary field
333. The invocation of the system write operation
similarly results in a write file request to srv, and srv
responds to the write request by placing a pointer to
the protocol channel 517 specified by the file descrip-
tor in the directory entry for the protocal service 209.
When the open system call is made using the name
of the file representing the protocol service 209, the
resulting open file request to srv 615 results in srv 615
returning protocol channel 517 for the protocol service
209. Open then provides protocol channel 517 with a
file descriptor 417 as already described, and that file
descriptor 417 may be used in the mount system call.

FIG. 13 shows data structures 1301 employed by
srv service 615 to register a protocal service 209. The
directory maintained by srv 615 is made up of a tree
of directory entries 1303. Each directory entry 1303
contains directory information 1305 and a number of
pointers. The pointers crganize directory entries 1303
into a tree. There may be one or more directory entries
1303 at each level of the tree and an entry 1303 ata
given level may either be an interior node, i.e., point
to the next lower level of the tree, or a leaf node rep-
resenting a protocol service 209. Interior nodes are
termed hereinafter "parents". Entries 1303 having a
given parent are connected into a child list 1310 by
next pointers 1311 and back pointers 1313;
additionally, each entry 1303 in a given child list 1310
has a pointer 1309 to its parent entry 1303. Parent
entries 1303 further have a pointer 1307 to the first
entry 1303 in child list 1310. Leaf nodes may have a
pointer 1314 to protocol channel 517 representing the
connection to protocol service 209 represented by the

10

18

20

25

30

35

40

45

50

55

19

leaf node. Additionally, when an entry 1303 is rep-
resented by a channel 301, aux field 333 in that chan-
nel 301 contains a pointer 1302 to entry 1303
represented by the channel.

Directory information 1305 contains the following
fields: name 1315: the name used to identify protocol
service 209 when it is registered; gid 1317: the qid
which represents directory entry 1303 in channels
301 representing that directory; type 1319 and dev
1321: these specify srv 615; mode 1323: set when the
directory represented by entry 1303 is opened to indi-
cate the open mode; atime 1325: indicates when entry
1303 was allocated; mtime 1327: indicates when
entry 1303's parent was allocated, or if entry 1303 is
a parent, the latest time when a child was created;
lenght 1329: if entry 1303 is a parent, indicates the
number of child entries 1303; and uid 1331: a string
value naming the user who owns the entry 1303; and
gid 1333: a string value identifying a group to which
the user identified in uid 1331 belongs.

The foregoing has shown in detail how the Plan
9 operating system implements a per-process name
space, how the name space may be modified by
means of bind and mount operations, how the name
space may be employed to locate files, and how file
operations may be performed on the files thus
located. In the following, two particularly advan-
tageous uses for the per-process name space will be
explored.

The Plan 9 Window System: FIGs. 14-23

A window system is the subsystem of the operat-
ing system which provides a process 102 executing
under the operating system with a window on a
graphics terminal and which responds to inputs from
the keyboard or a pointing device such as a mouse to
the window. Prior-art window systems such as X win-
dows are large and complex systems. Plan 9's defini-
tion of functions available to processes as file trees
and the capability of a Plan 9 process 102 to define
its own name space 115 have made it possible to con-
struct a window system which has substantially the
same functionality as a prior-art window system such
as X windows, but requires substantially less code. A
presently-preferred embodiment is less than 1/10 the
size of X windows. Further, the principles employed in
the design of the Plan 9 window system may also be
used to design efficient window systems for other
operating systems. In the following, there will first be
presented an overview of the Plan 9 window system;
thereupon, certain aspects of the system which are
responsible for its efficiency will be discussed in more
detail

37 EP 0 466 486 A2 38

Overview of the Plan 9 Window System: FIGs.
14 and 15

The Plan 9 terminal, Gnot 711, includes a
keyboard, a graphics display, and a mouse. These
devices may be incorporated into the name space 115
of a plan 9 process 102 by binding the kernel services
#b and #c to the directory /dev 619. When such bind-
ings are performed, /dev/imouse refers to the
mouse, /dev/cons refers to the keyboard, and /dev-
/bitblt refers to the graphics display. Graphics oper-
ations can be carried out by opening these files and
performing read and write operations as appropriate.
For example, motion of the mouse may be determined
by a read operation on /dev/mouse and a display may
be created on the graphics display by writing to /dev-
/bitblt.

The Plan 9 window system is implemented as a
protocol service 209. The window protocol service
provides instances of files to processes 102 which
have windows on Gnot 711. A process controls its
window by reading and writing files provided by the
window service. The window service is implemented
by means of a set of processes which have name
spaces which include the files /dev/imouse, /dev/ cons,
and /dev/bitblt. As will be explained in more detail
later, those files may be provided by any service 123;
the only requirement is that a read or write operation
to the file eventually result in a read of data from a win-
dow displayed on a terminal or a write of data to a win-
dow displayed on a terminal. Most commonly, the files
are provided by the kernel services #b and #c or by
another window protocol service of which the window
protocol service in question is the client and the win-
dows controlled by the files are displayed on a Gnot
711.

Because the window service is a protocol service
209, the read and write operations go to mount ser-
vice 203, which translates the operations into mes-
sages to the window service and awaits the return of
data in rmessages from the window service. When the
datareturns to mount service 203, itis returned to pro-
cess 102 which performed the read or write oper-
ations. The window service responds to the
messages by translating them into reads and writes
on the files /devimouse, /dev/cons, and /dev/bitblt
which are part of the window service’s name space;
the responses to these reads and writes are trans-
lated into rmessages and returned to mount service
203. The window service thus effectively multiplexes
the /devicons, /devimouse, and /dev/bitblt files in its
name space among a plurality of processes 102. Or
put another way, the window service provides proces-
ses 102 with a set of virtual terminals.

FIG. 15 shows file tree 1501 which the window
service provides to a process 102. Root 1502 is a
directory which contains the following files: bitblt
1503: writes to this file result in changes in the

10

18

20

25

30

35

40

45

50

55

20

graphics display in the window for the process 102;
reads from the file return information about the display
in the window for the process; cons 1505: reads from
this file obtain input from the keyboard connected to
Gnot 711; writes to the file cause characters to be out-
put to the display at the cursor position; hold 1507:
This file indicates how process 102 is to respond to
newline characters obtained in reads from cons 1505;
mouse 1509: reads from this file obtain input from the
mouse connected to Gnot 711; nbmouse 511: reads
from this file also obtain input from the mouse, but do
not wait for a change in the state of the mouse; rcons
1513: reads from this file obtain unprocessed input
from the keyboard connected to Gnot 711; and snarf
1515: this file is used to transfer data between win-
dows; a write writes data from a window into the snarf
file; a read reads the data in the snarf file into a win-
dow

Each time a process 102 mounts file tree 1501 in
its name space 115, it receives a new instance of file
tree 1501, i.e., instances of the files in that file tree
1501 are accessible only via connections which stem
ultimately from the process 102 which did the mount
operation. As indicated in the general discussion of
services 123, the window service can provide a new
instance of file tree 1501 each time file tree 1501 is
mounted in a process 102’s name space because the
channels 301 which represents the files provided by
the window service to process 102 identify the files by
gids which are provided by the window service. Thus,
afile /dev/bitblt for one process 102 has a gid different
from the file /dev/bitblt for another process 102, and
a write by a process 102 to the file /dev/bitblt is a write
only to the file /dev/bitblt for that process 102.

FIG. 14 provides an overview of a window service
1405 which has the files provided by kernel service #b
1411 and #c 1419 in its name space and which is pro-
viding windows on Gnot 711 to a set of processes P
102(a) through P 102(n). Each process P 102 is con-
nect by means of pipe 1403 to window service 1405.
As preriously explained, operations on the files pro-
vided by window service 1405 become tmessages
and rmessages 205 and 207 on pipe 1403 between
window service 1405 and the processes 102. The files
provided by window service 1405 appear as 1406 in
FIG. 14. Each time a process 102 mounts the file tree
1502 provided by service 1405, the process receives
a slot 1407 in files 1406. The slot includes a full set of
the files 1409(0..k) provided by service 1405 to the
process 102; thus, slot 1407(a) contains instances of
files 1409(0..k) for process 102(a), and so forth.

Window service 1405 translates the messages
205 and 207 specifying file operations on files 1409
for agiven process 102 into function calls 217 and 219
specifying operations on the files provided by kernel
#b service 1411 and kernel #c service 1417. When #b
is bound to /dev 605, read function calls 1421 on /dev-
/mouse 1413 obtain input from mouse 1423, while

39 EP 0 466 486 A2 40

read and write function calls 1425 on /dev/bitblt 1415
control display 1427. Similarly, when #c is bound
to /dev 605, read function calls 1429 on /dev/cons
1419 obtain input from keyboard 1431.

Implementation of File System 1406: FIGs. 18
and 19

Figure 18 shows the data structures 1801
employed in a preferred embodiment to implement
and locate the instances of files in the file trees 1501
which window service 1405 provides to processes
102. As previously mentioned, when afile provided by
a protocol service 209 is opened, the open tmessage
sent by mount service 203 to the protocol service 209
includes a file identifier (FID) 331; in response to the
open tmessage, protocol service 209 associates the
file identifier 331 with a qid 323 which protocal service
209 uses internally to identify the file. The open rmes-
sage returned by protocol service 209 includes the gid
323, and both fid 331 and the qgid 323 associated with
it by protocol service 209 are included in channel 301
representing the open file.

Beginning with file array 1803, array 1803 con-
tains an entry 1805 for every instance of a file being
currently provided by protocol service 209. An entry
1805 for a given instance is indexed by file identifier
331 for the instance. Each entry 1805 contains three
fields: busy field 1807, indicating whether the entry
1805 is in use; field 1809, indicating whether the inst-
ance is open; and file pointer field 1811, which points
to file structure 1813 for the instance. File structure
1813 contains the following fields: busy 1815, indicat-
ing whether the instance is busy; file type 1817, indi-
cating which of the files in file tree 1501 the file is. slot
1819: a value which indicates which slot 1407 the file
belongs to; file structures 1813 for all files in a given
file tree 1501 have the same value in slot 1819; and
description pointer (dpftr) 1821, which points to an
entry 1823 in an array of descriptors for the files which
may be present in a directory tree 1501.

File type 1817 and slot 1819 are concatenated
together to produce qid 323 for the instance. Descrip-
tor entry (DE) 1823, has three fields: a character string
name 1825, which is one of the names in file tree
1501, a file type value 1827 which is the file type cor-
responding to the name and which has the same
value as ftype field 1817, and a permissions field
1829, which specifies how the field may be used.

Each of the possible values of slot 1819 corres-
ponds to a data structure which represents the win-
dow in display 1427 which will be controlled by
tmessages to file tree 1501 represented by the slot.
Window data structure 1903 is shown in FIG. 19; it
contains the following classes of information: ref field
1905 indicates whether there is a file tree 1501 corre-
sponding to the value of slot 1819; busy 1907 indi-
cates whether window data structure 1903 is currently

10

18

20

25

30

35

40

45

50

55

21

in use; slot 1909 is the slot value to which window
1903 corresponds; wdesc 1911 is information which
describes the window represented by structure 1903;
same desc 1913 is information which describes which
portion of the window specified by wdesc 1911 is pre-
sently being displayed; gh 1914 is a pointer to a
character in text 1915; text 1915 contains text to be
displayed in the window; rawbuf 1917 is a buffer con-
taining raw (unprocessed) input to the window from
keyboard 1431; console write information 1919 is
information received in a twrite message specifying
the file cons 1505; console read information 1921 is
information to be sent in response to a tread message
specifying the file cons 1505; mouse read information
is information to be sent in response to a tread mes-
sage specifying the file mouse 1509; read queue
pointer (rgpftr) 1925 is to a queue of tread messages
specifying files in the file tree 1501 represented by the
slot; write queue pointer (rqptr) 1927 is to a queue of
twrite messages specifying instances in the file free
1501 represented by the slot; kbdc 1929 contains a
keyboard character of interest tc the window; send
1931 is a flag indicating that a change in the window
requires that an rmessage be sent; window status
1933 is information indicating the present status of the
window; and bit read information 1935 is information
needed to read bits from the window’s bit map.

File Locator Operations on a file tree 1501

As a protocol service 209, window service 1405
receives tmessages from mount service 203 and res-
ponds to the tmessages with rmessages which it
returns to mount service 203. In the following, the
manner in which window service 1405 responds to
certain of the tmessages will be explained to provide
an example of the interaction between mount service
203 and protocol service 209 as seen from the pro-
tocol service 209.

Two of the operations specified by tmessages are
the attach and walk file locator operations. Beginning
with the attach operation, As previously described,
the execution of a mount system call results in mount
service 203 sending an attach rmessage to the pro-
tocol service 209 represented by the protocol channel
517 whose file descriptor 417 is used in the mount
system call. In a preferred embodiment, the mount
system call further includes data which mount service
203 sends in the tattach message to protocol service
209; when protocol service 209 is a window service
1405, the data includes a slot number. Window ser-
vice 1405 responds to the tattach message by finding
entry 1805 for the file identifier included in the tattach
message and setting busy 1807 to 1 and open 1809
to 0; then it allocates a file structure 1813 for the inst-
ance, sets slot field 1819 to the value provided in the
tattach message, sets busy 1815 to 1, ftype 1817 to
avalue which specifies a root directory, and dptr 1821

41 EP 0 466 486 A2 42

to point to directory entry 1823 for root 1502. The rat-
tach message returned by window service 1405
includes a qid 323 made from ftype 1817 and slot
1819. Finally, the reference count in window 1905
associated with the slot is incremented.

As previously described, the walk tmessage is
generated when a channel 301 involved in the resol-
ution of a path name represents a file in a protocol ser-
vice 209. The tmessage specifies the file identifier 331
for a directory in protocol service 209 and the name
of afile in that directory. The rmessage returns the gid
for the instance specified by the name. The file iden-
tifier 331 in the tmessage is now associated with the
returned qid. In a preferred embodiment, window ser-
vice 1405 responds to the walk tmessage by locating
entry 1805 for the file identifier 331 and then looking
at the name. If the name is ".", indicating root 1502,
file 1813 pointed to by file pointer 1811 in entry 1805
will describe the root directory. In this case, the qid
323 in that file 1813 is rturned in the rmessage; other-
wise, the array of file descriptions is searched until
description entry 1823 is found which has name field
1825 corresponding to the name. The value of ftype
field 1827 from the entry 1823 and the value of slot
1819 from file 1813 for the directory are saved. Then,
all of the file structures 1813 which are currently in use
are searched for one which has the saved slot value
in slot 1819 and the saved ftype value in ftype field
1817; if one is found, the saved values are returned
as qid 323; if one is not found, a new file structure 813
is allocated, field 1817 is set from the saved ftype
value, field 1819 is set from the saved slot value, dptr
1821 is set to point to the entry in the array of file des-
criptions which had the name, busy is set to 1, and fptr
1811 in entry 1805 for the file identifier 331 is set to
point to the newfile structure. The saved slot and ftype
values are then returned as gid 323.

Internal Structure of Window Service 1405:
FIGs. 16-19 and 21

In a preferred embodiment, a window service
1405 is implemented by means of three processes
102 executing under the Plan 9 operating system.
FIG. 16 shows these three processes in window ser-
vice 1405(0) and their relationship to the kernel ser-
vices #b 1411 and #c 1419 and to processes 102
which are clients of window service 1405. The client
processes appear in FIG. 16 as CP 1615(0), CP
1615(1), and the three processes which make up a
second window service 1405(1), which is also a client
of window service 1405(0) and itself has clients which
are not shown in FIG. 16 There are thus three levels
of terminal services present in FIG. 16: real terminal
services provided by the kernel services #b and #c, a
first level of virtual terminal services provided by win-
dow service 1405(0) to its clients, and a second level
of virtual terminal services provided by window ser-

10

18

20

25

30

35

40

45

50

55

22

vice 1405(1) to its clients. As will be explained in more
detail below, each level of terminal services corres-
ponds to a different name context (NC) 1621. For
example, in name context 1621(0), the file name
"mouse" refers to the mouse file provided by kernel
service 1411; in name context 1621(1), the file name
"mouse" refers to afile in one of the file trees 1501 pro-
vided by window service 1405(0); in name context
1621(2), the file name "mouse" refers to a file in one
of the file trees 1501 provided by window service
1405(1).

Beginning with window service 1405(0), the three
processes making up window service 1405(0) are
main process 1613(0), mouse slave process (MS)
1603(0), and keyboard slave process (KS) 1605(0).
Main process 1613(0) receives tmessages from the
clients of window service 1405(0) via pipe 1607(0)
and responds to the tmessages by providing rmes-
sages via pipe 1606(0) to the clients. The tmessages
and rmessages appear as 205(0) and 207(0) in FIG.
16. Where a tmessage requires an operation on a file
provided by #b 1411 or #c 1419, main process
1613(0) uses Plan 9 read and write system calls to
perform the necessary operation. As previously exp-
lained, the Plan 9 operating system automatically
converts the file system calls into requests 217 and
219 of the kinds which are proper to file services #b
or #c.

Mouse slave process 1603(0) and keyboatd
slave process 1605(0) are necessary because a pro-
cess 102 which performs a file read operation on the
mouse file provided by #b 1411 or the cons file pro-
vided by #c 1419 will block until there is actually data
to be read from the file. Since main process 1613(0)
must be continually available to respond to tmes-
sages from its clients, it cannot block, and therefore
cannot directly perform read operations on the mouse
file in #b or the cons file in #c. These reads are done
by mouse slave process 1603(0) and keyboard slave
process 1605(0) respectively. The two slave proces-
ses are both clients of main processor 1613(0). The
operation of mouse slave process 1603(0) is typical
for both. Mouse slave process 1603(0) simply exec-
utes a loop in which it does a Plan 9 system read call
on the file mouse provided by #b 1411 and then does
a plan 9 system write call on the file mouse in one of
the file trees 1501 provided by window server
1405(0). By convention in a preferred embodiment,
the file tree 1501 written to by slave processes
1603(0) and slave process 1605(0) is always the one
which has slot 1407 0. The Plan 9 operating system
of course automatically converts the file system calls
to the mouse file provided by #b to the appropriate
request 215 and the file system calls to the mousefile
provided by window server 1405(0) to write tmes-
sages 1611(0) which are sent via pipe 1607 to main
process 1613, which responds to them in the same
fashion as to tmessages from any other client.

43 EP 0 466 486 A2 44

As is apparent from the foregoing, mouse slave
process 1603(0) is performing file operations on
mouse files which exist in two different name contexts
1621. The read operations are on a mouse file in
name context 1621(0), while the write operations are
on a mouse file in name context 1621(1). This situa-
tion is achieved in mouse slave process 1603(0) by
employing the Plan 9 open, forkpgrp, and mount oper-
ations. The manner in which this is done is shown in
FIG. 17, which is a flowchart of the mkslave function.
mkslave 1701 is used to make both mouse slave pro-
cess 1603(0) and keyboatd slave process 1605(0).
The function has two arguments, a pathname and a
count specifying the number of bytes to be read on
each read operation. It returns the process identifier
(pid) of the slave process it creates.

mkslave 1701 is invoked by main process
1613(0) with the arguments "/dev/imouse" and "10".
Main process 1613(0) has a name space 115 in which
kernel service #b 1411 has been bound to the file /dev
provided by the kernel root file service, and conse-
quently, the path name "/dev/imouse" will be resolved
to a file descriptor 417 specifying a channel 301 which
represents the file "mouse" provided by kernel service
#b 1411. This fact is indicated in FIG. 1701 by the
notation "name context 1621(0)" at the top of the fig-
ure. At the time that main process 1613(0) uses
mkslave 1701 to create mouse slave 1603(0), it has
already created pipe 1607(0) and registered window
service 1405(0) in srv. The file descriptor written to the
file in srv representing window service 1405(0) is one
of the file descriptors for the files represented by pipe
1607(0). This file descriptor, termed in the following
"cfd", represents the file to which clients of window
service 1405(0) write tmessages.

The first thing that mkslave 1701 does is open the
file specified by the path name argument (1705).
Since we are still in name context 1621(0), that file is
the file "mouse" provided by #b 1411. As a result of
the open operation, the file descriptor fd1 now repre-
sents the file "mouse" of #b. Next comes a switch
statement which includes a fork function (1707). The
fork function creates a new child process 102 which
has a copy of parent process 1613(0)’s context, and
therefore has a copy of fd1. The child process 102
also has the same name space 105 as parent process
1613(0). There are three branches to the switch state-
ment. The first branch, 1709, deals with errors occur-
ring during execution of the fork function; the second
branch, 1713, is code which is executed by parent
process 1613(0) but not by child process 1603(0). As
indicated by blocks 1737 and 1739, the code closes
parent process 1613’s copy offd1 and returns a pid
which is the pid ofchild process 1603(0).

The third branch of the switch statement, 1715, is
code that is exedcuted only by child process 1603(0).
First, "forkpgrp" is executed to give child process
1603(0) a new name space 105; since forkgrp is

10

18

20

25

30

35

40

45

50

55

23

invoked with the "0" argument, the new name space
is a copy of the parent process 1613’s name space
105. Next, a system mount operation is performed
(1721). The mount binds cfd, which represents the
end of pipe 1607(0) which is used by clients of window
service 1405(0), to the directory /dev in the new name
space 105 using the BEFORE option. As a consequ-
ence of the mount operation, the file tree 1501 in slot
0 of service 1405(0)'s files 1406 has been bound
to /dev and a reference to a file such as /dev/cons is
now a reference to the file cons in slot 0 if files 1406.
The next step is to open the file represented by the
path name argument, "/dev/imouse". However, since
process 1603(0)’s name space 105 has been
changed and "cfd" has been mounted on /dev, the
path name argument in the open system call now
resolves not to the file "mouse" in service #b 1411, but
rather to the file "mouse" in the slot O file tree of ser-
vice 1405(0). The change in name context is shown
in FIG. 17 by the dashed line following block 1717
which divides name context 1621(0) from name con-
text 1621(1).

The file descriptor 417 returned by the open sys-
tem call is assigned to "fd2". Thus, at this point, fd1
represents the file "mouse" in service #b 1411 and fd2
represents the file "mouse" in slot 0 of service
1405(0). The rest of the third branch of switch 1707 is
aloop 1735 in which mouse slave process 1603 does
a read system call using fd1, which reads the mouse
file in service #b 1411 (1725), and then does does a
write system call using fd2 and the data received from
the mouse file in service #b 1411 which writes the data
to the mouse file in slot 0 of service 1405(0) (1733).
If the write fails, i.e., if not as much data can be written
to service 1405(0) as was received from service #b
1411, the process exits (1731). Keyboard slave
1605(0) is created in exactly the same way, except
that the invocation of mkslave 1701 specifies "dev-
Ircons as the path name and "1" as the byte length.
Consequently, each read on fd1 by keyboard slave
1605(0) will read one character from the keyboard,
and each write on fd2 by keyboard slave 1605(0) will
write the character to the "rcons" file of the file tree
1501 in slot 0. "rcons" is used here so that window
service 1405(0) receives the characters exactly as
they are input at the keyboard.

mkslave function 1701 illustrates some funda-
mental consequences of the semantics of file access
operations and of the "fork" and “forkpgrp" system
calls in Plan 9. Beginning with the file access oper-
ations, those operations refer to files by means of file
descriptors 417, not path names; the file descriptors
in turn refer to channels, and as long as a channel rep-
resents a given file, a file access operation using afile
descriptor which refers to the channel will access the
given file. Further, when "fork" creates a new process
102, the new process 102 receives a copy of the old
process 102’s context. Included in this context is file

45 EP 0 466 486 A2 46

descriptor array 413; accordingly, the new process
102 can perform file access operations on any file
which was open for the process 102 which executed
the fork system call. Finally, when “forkpgrp" creates
a new name space 115, it only creates a new mount
table 801 for the process 102 executing forkpgrp; file
descriptor array 413 for the process 102 remains
unchanged. Because this is the case, a process 102
which executes mkslave 1703 can use the same
pathname to open the file "rcons" of kernel device #c
1419 and the file "rcons" of window service 1405. As
will be explained in more detail below, the semantics
of file access operations, of “fork", and of "forkpgrp"
also permit recursive creation of services, i.e., a ser-
vice may have another instance of itself as a client.

Pipe 1607(0) also connects main process
1613(0) to its clients 1615(0 and 1) and window ser-
vice 1405(1). Pipe 1607 was created by main process
1613(0), and consequently, main process 1613(0)
has service file descriptor 1617(0) representing the
file in pipe 1607(0) to which main process 1613 writes
rmessages. Each client process has client file des-
criptor 1619(0) representing the file in pipe 1067(0) to
which the client writes messages. Client processes
are created and given client file descriptor 1619(0) by
main process 1613(0). A new client process is created
each time a user of Gnot 711 requests a new window
in screen 1427. In a preferred embodiment, a new
window is requested by using mouse 1423 to select
that choice from a menu on screen 1427.

When mouse 1423 selects the new window from
the menu, the result is that mouse slave 1603(0) com-
pletes a read on the mouse file provided by service #b
1411 and writes the data read from that mouse file to
the mouse file in service 1405(0)’s slot 0. The result
is a message on pipe 1607(0) to main process
1613(0), which responds to the tmessage by locating
and setting up a window structure 1903 for the new
window. Main process 1613(0) then calls a function
"spawn" using the slot for the new window as an argu-
ment. spawn creates a client process 1615, makes
the file tree 1501 in window service 1405(0) for the slot
specified in the argument part of the name space 105
of client process 1615, and executes the shell prog-
ram in the new client process 1615. FIG. 21 is a flow
chart of the spawn function in a preferred embodi-
ment.

spawn function 2101 begins by opening a
synchronization pipe (2105). The purpose of the
synchronization pipe is to make sure that main pro-
cess 1613(0) does not proceed until new client pro-
cess 1615 is running. Next, the client process 1615 is
created by executing the fork system call in a switch
statement (2107). If there is an error on the fork,
branch 2109 is taken, and the value -1, indicating an
error, is returned. If the fork succeeds, main process
1613(0) process as indicated in branch 2113: it reads
the synch pipe (2115) and returns the pid of the child

10

18

20

25

30

35

40

45

50

55

24

(2117). Since main process 1613(0) cannot complete
the read until new client process 1615 has placed data
in the synch pipe, main process 1613 will not return
until new client process 1615 is running.

Branch 2107 shows how the new client process
proceeds. First, the new client process 1615 obtains
a new name space 105 by executing forkpgrp (2119).
Since the argument "0" is used, the new name space
105 is a copy of the name space of main process
1613. Then the new client process 1615 does a write
to the synch pipe, so that main process 1613(0) can
continue executing (2121). Next, it mounts cfd
1619(0) onto a pathname which indicates a standard
place to mount a file tree 1501 from window service
1405(0). The mount system call used to do this
includes the slot number as an argument (2123). As
previously explained, as a result of the mount system
call in client process 1615, a tattach message is sent
via pipe 1607(0) to window service 1405(0); window
service 1405(0) responds to the tattach message by
returning the qgid for root 1502 of the file tree 1501 in
the slot specified by the slot number, and that qid is
placed in channel 301 specified by cfd 1619 (of
course, client process 1615 was given a new copy of
cfd 1619 when it was created). Next, the bind system
call is used to bind the pathname upon which the file
tree 1501 was mounted to /dev (2125). The "BEF-
ORE" option is used, and consequently, a path name
such as /dev/imouse will now be resolved to the file
"mouse" in file tree 1501 in the slot specified by the
slot number.

Next, the files represented by the file descriptors
for the synch pipe, the service end of pipe 1606(0),
and standard /O are closed. (blocks 2127,2129,
2131). By convention in Plan 9, the files for standard
I/0 belonging to a process have file descriptors 0 and
1; thus, closing these files in step 2131 makes sure
their descriptors will be available for subsequent use.
The next step is to open /dev/cons for reading (2133).
The open system call results in a walk tmessage,
which in turn results in the creation of a file structure
1813 for /dev/cons in the proper slot of files 24086, and
in an open tmessage, which results in open field 1809
for entry 1805 for the file being set to 1. Open begins
looking for file descriptors 417 at the beginning of file
descriptor array 413 for client process 1615, so thefile
descriptor returned by open will be file descriptor 0,
and /dev/cons will function as the standard input file.
Following that, an open system call is made to
open /dev/cons for reading, with the results just indi-
cated (2135) except that the file descriptor 417 retur-
ned by open will be file descriptor 1, and /dev/cons will
function as the stanard output file. The next two steps
are simple. In 2137, file descriptor 1 is cloned, so that
file descriptor 2, which by convention represents the
standard error file will represent the same file as file
descriptor 1 and error messages will be output
to /dev/cons. Finally, the shell program , which pro-

47 EP 0 466 486 A2 48

vides the Plan 9 user interface, is executed (2139).

If the new client process 1615 then executes the
program for window service 1405, the result is a new
window service 1405(1) which is a client of window
service 1405(0). Window service 1405(1) has the
same components as window service 1405(0), and is
connected to its slave processes and client processes
by pipe 1607(1). Window service 1405(1) functions in
exactly the same way as window service 1405(0),
except that it is set up in the name space 105 of new
client process 1615, i.e., path names such as /dev-
Imouse or /dev/cons refer to files in file tree 1501 in
the slot 1407 of service 1405(0) belonging to new
client process 1615. Consequently, writes to and
reads from these files result in tmessages via pipe
1607(0) to window service 1405(0) instead of
requests to kernel services #b and #c. Window ser-
vice 1405(0) then produces the requests to kernel ser-
vices #b and #c in response to the tmessages from
window service 1405(1).

Intemal Structure ot Main Process 1613: FIG. 20

FIG. 20 shows intemal structure 2001 of main pro-
cess 1613 of a preferred embodiment of window ser-
vice 1405. Main process 1903 handles tmessages
205 and 207 from client processes 1615 and from
mouse slave 1603 and keyboard slave 1605 and
updates window data structures 1903 in response to
the tmessages. It then uses the information in window
data structures 1903 in file access system callls to the
files provided by #b 1411 and #c 1419. In a preferred
embodiment, main process 1613 includes the follow-
ing principal components: I/O function 2019: I/O func-
tion 2019 responds to tmessages 205 and 207 from
window service 1405’s clients and from mouse slave
process 1603 and keyboard slave process 1605;
mouse control task 2008: a task which handles the
tmessages which 1/0 2019 receives from mouse slave
1603; keyboard control task 2009: a task which han-
dles the tmessages which 1/0 2019 receives from
keyboard slave 1605; window control task 2005: a
task which updates data in windows 1903 as required
by inputs from mouse 1423; terminal control
2015(0..n) a task corresponding to each window
1903(0..n) which changes the state of its correspond-
ing window 2013 as required by the inputs from
keyboard control 2009 and window control 2005 and
then sends rmessages as required to the client pro-
cess 1615 to which the window belongs and does
write operations on the files provided by #b 1411 and
#c 1419 to display the window as modified.

The task components of main process 1613 are
entities internal to main process 1613 which main pro-
cess 1613 schedules and runs in response to events
which change the state of a window 1903. The tasks
thus have some of the general properties of proces-
ses, but they are not Plan 9 processes 102. In particu-

10

18

20

25

30

35

40

45

50

55

25

lar, they all share main process 1613’s context,
including its name space 105. The rule for scheding
of the tasks is the following: whenever a message is
received in /O 2019 which changes the sute of a
resource for which a task is responsible, the task is
placed on a queue of tasks to be run; whenever the
queue is empty, /O function 2019 is executed.

Operation of components 2001 is broadly as fol-
lows: 1/0 2019 reads the file identified by service file
descriptor 1617 of pipe 1607 to obtain a tmessage. If
the tmessage specifies a file location operation, /O
2019 handles the message itself and returns the
appropriate Rmessage. If the tmessage specifies a
file access operation, 1/0 219 finds the window 1903(i)
belonging to the process which sent the message,
updates the information in window 1903(i), as shown
by arrow 2019, and schedules terminal control 2015(i)
to run. When terminal control task 2015(i) runs, it
updates window 1903(i) as shown by arrows 2023
and 2025 and takes any action required by the
update. One example of such an action is an rmes-
sage to the process to which window 19203(i) belongs,
as shown by the arrow labelled 207. The rmessage is
written to the file represented by client file descriptor
1619 in pipe 1607. Another example is write oper-
ations to #b 411 and #c 1419 which redraw the win-
dow in screen 1427 corresponding to window 1903(i),
as shown by the arrows labelled 219. At some still
later time, /0 2019 resumes execution and reads
another message from pipe 1607.

Messages from mouse slave process 1603 and
keyboard slave process 1605 are special cases. If the
message is from mouse slave process 1603, /0 2019
writes the message to global storage mouse message
2002 and schedules mouse control task 2008, which
runs, translates mouse message 2002 into mouse
data 2006, and schedules window control 2005. Win-
dow control 2005 examines mouse data 2006 to
determine the current window 2013, i.e., the window
1903 which corresponds to the window in display
1427 in which the cursor was located when the data
was received from mouse 1423. If mouse data 2006
indicates a window in display 1427 which does not
correspond to the current window 2013, then window
control 2005 makes the window 1903 corresponding
to the window in display 1427 specified by mouse data
2006 into the new current window 2013. It then
updates current window 2013 as required by the
mouse message and schedules terminal control 2015
for the new current window. When terminal control
2015 executes, it does write operations which redraw
the screen and sends the required rmessage to
mouse slave 1603. If the message is from keyboard
slave 1605, 1/0 2019 proceeds as indicated for the
mouse slave, except that the new input character is
written to the global viable KBDC 2004 and keyboard
control task 2009 is scheduled Keyboard control task
2009 runs, modifies current window 2013, and

49 EP 0 466 486 A2 50

schedules terminal control process 2015 for current
window 2013, which performs the operations just des-
cribed.

A Detailed Example: Operations on hold File
1507: FIGs. 22 and 23

"hold" file 1507 of file tree 1501 provided by win-
dow service 1405 is used to implement an improve-
ment in character input interfaces for interactive
process. The improvement solves part of a classic
problem in such interfaces: the fact that the line ter-
mination codes (typically new line or carriage return)
used to indicate the end of the line have three different
functions in such interfaces: They specify how a string
of text is to be divided into lines when the string is dis-
played; They specify that the string of text between
the last line terminator and the current line terminator
is to be sentfrom the terminal where it is being entered
to the interactive program; and In the case of com-
mand line interfaces, they specify that the string of text
between the last line terminator and the present line
terminator is to be executed. Thus, in atypical interac-
tive user interface, when a user specifies a line termi-
nation code, he has finished with the line; it will be
displayed, sent, and executed as it is when the user
specifies the line termination code.

The problems inherent in this arrangement are
obvious, and the prior art has solved some of them
with special characters; thus, one special character
may be used to override the new line for display pur-
poses, and another character may be used in most
command line interfaces to indicate that command
line input continues into the next line. What has
heretofore not been solved is the problem arising from
the fact that the line is sent to the interactive program
in response to the line termination character. In con-
sequence, while many interactive programs allow a
user to edit a line uni he enters aline terminator code,
only editing programs typically permit a user to enter
a line, enter a line terminator code, and then return to
edit the entered line. The only solution available to the
problem has been to design the interactive program
so that it will read input from a file, use an editor to
create the input file, and then provide the file to the
interactive program. What is needed, and what is pro-
vided by window service 1405, is a way of letting the
user prevent the character string he is inputting from
being sent until he so specifies.

Window service 405 handles the problem as fol-
lows: in a first mode, the line termination code causes
the line to be sent to the interactive program as
heretofore; in a second mode, entered by striking a
key at the terminal, characters input from the time the
mode is entered until the time the mode is exited are
sent at the time the mode is exited. The second mode
is termed herein the hold mode. In a preferred embo-
diment, the hold mode is exited by striking the same

10

18

20

25

30

35

40

45

50

55

26

key used to enter it. Further, the form of the cursor and
of the window border employed in the preferred embo-
diment indicate whether or not the window is currently
in hold mode. In the preferred embodiment, the cursor
is an arrow. In hold mode, the cursor is an outline
arrow; otherwise, it is a solid arrow.

FIG. 22 shows the data structures in a window
1903(i) which are used to implement the above
improvement; FIG. 23 shows portions of code exec-
uted by 1/0 2019, window control task 2005, and ter-
minal control task 2015(i). Beginning with FIG. 22,
window description information 1911 in window 1903
includes a field cursotp 2203 which points to a bit map
for the current cursor. As previously indicated, gh
1914 is a pointer to a current position in text 1915,
which in turn contains the text being displayed in the
window represented by window structure 1903(i).

Cons read info 1921 contains three fields which
store information from the mostrecent tread message
specifying a read on the files cons and rcons in file
tree 1501 corresponding to window structure 1903(j).
The fields are rtag 2205, which contains the tag from
the message, rfid 2207, which contains the fid from
the message, and rcnt 2209, which contains a count
from the message which specifies the number of
characters to be read. RQPTR 1927 points to a queue
of pending reads to be done to satisfy prior tread mes-
sages; each element 2213 of the queue has rtag, rfid,
and rent from the tread message to which element
2213 corresponds. KBDC 1929 contains the last
character to be read from keyboard 1431, and hold
2211 is a flag which indicates whether window 1903(i)
is in hold mode.

Since the hold mode is employed to send data in
response to a tread message, the discussion begins
with a description of how tread messages are handled
in a preferred embodiment. In the preferred embodi-
ment, when 1/0 2019 receives a tread message speci-
fying a read on rcons or cons, it uses qgid 323 to
determine the slot for file tree 1501 containing rcons
or cons and thereupon locates window 1903(k) corre-
sponding to the slot. Then, as shown in flow chart
2333 of FIG. 23, 1/0 2019 writes the tag from the tread
message to rtag 2205 of window 1903(k), the fid from
the message to rfid 2207, and the count to rent 2209
(2335). Thereupon, I/0 2019 invokes a scheduler
which runs whichever of tasks 2008, 2005, 2009, or
2015 is next in the queue of tasks to be executed
2337).

When terminal control task 2015(k) next runs, it
performs the operation shown in flowchart 2313. If rfid
2207 is not equal to 0 (2325), a new tread message
has been received; consequently, task 2015(k)
makes a new rqe 2213 (2317), sets its fields from rtag
2205, rfid 2207, and rcnt 2209 (2313), sets rfid 2207
to 0, and places the new rge 2213 at the end of the
queue. After making a entry in the read queue for any
read operation indicated in cons read info 1919, ter-

51 EP 0 466 486 A2 52

minal control task 2015(k) next determines whether
the read queue is empty and if it is, processes the first
entry 2213 in the queue (2325). As shown in flowchart
2323, the manner in which the entry is processed
depends on whether hold 2211 indicates that window
1903(k) is in hold mode. If hold field 2211 indicates
that window 1903(k) is in hold mode, the number of
characters sentin the read operation is set to the mini-
mum of rent in entry 2213 and the number of charac-
ters between the end of text 1915 and the position
presently marked by gh 1914 (2327), i.e., any line ter-
mination characters between the position marked by
gh 1914 and the end of text 1915 are simply ignored.
Thereupon, an rread message containing the tag and
the fid from entry 2213 and the characters is sent to
the process to which window 1903(k) belongs (2329).
Finally, gh is updated to point to the character in text
1915 following the last character sent and RQPTR
1925 is updated to point to the next element 2213 in
the request queue.

If hold 2211 indicates that window 1903(k) is not
in hold mode, control goes to block 2326. There, n is
set to the minimum of rcnt and the number of charac-
ters from the next new line to the position marked by
gh 1914, i.e., n specifies only the number of charac-
ters in text 1915 from gh through the next new line
character. These are then the characters which are
sent in block 2329, and gh 1914 is updated to point to
the character following the next new line character.

In a preferred embodiment, hold mode is entered
by ssriking the escape key and left by again striking
the escape key. The escape key thus serves as a
toggle between the hold mode and the mode in which
a line terminator causes the line to be sent (termed
hereinafter non-hold mode). Flowchart 2301 shows
how hold field 2211 is set and reset in response to the
escape key. As previously described, when keyboard
slave 1605 receives a character, it does a write to the
file rcons of slot 0 of window service 1405. The write
results in a twrite message received by main process
1613. /0 2019 deals with twrite messages to rcons of
slot 0 by placing the character in KBDC 2004 and
scheduling keyboard control task 2009. Keyboard
control task 2009 writes the contents of KBDC 2004
into KEYBDC 1929 of current window 2013, places
terminal control 2015 corresponding to current win-
dow 2013 in the queue of tasks to be run, and then
calls the scheduler. Some time later, terminal control
task 2005 runs; when it does so, it executes code
which examines KEYBDC 1929 in its window 1903; a
flow chart for that code appears at 2301 of FIG. 23. In
block 2303, KEYBDC 1929 is fetched from KEYBDC
1929; at decision block 2305 it is tested; if it is the
escape character, hold 2211 is toggled (2307), the
cursor is set as required by the new value of hold 2211
(2309), and the screen border is set as required by the
new value (2311). In a preferred embodiment, flow-
charts 2301, 2313, and 2314 are executed in that

10

18

20

25

30

35

40

45

50

55

27

order by terminal control task 2015. After execution of
the flowcharts, terminal control task 2015 redraws
window 2013, so that the results of striking the escape
key are immediately visible to the user of Gnot 711.
The preferred embodiment of window service
1405 provides client processes 1615 with a way of
setting hold 2211 in the window 1903 corresponding
to the process 1615. To do so, the client process 1615
performs a close system call on hold file 1507; the
close system call results in a tclunk message, and /O
2019 responds to the tclunk message by setting hold
2211 in the corresponding window 1903. The prefer-
red embodiment also provides an example of how
reads and writes are handled for files for which those
operations are not meaningful: when /O 2019
receives a fread message specifying hold 1507, it
returns an rread message in which the length of the
data returned is O; similarly, when 1/O 2019 receives
a twrite message to that file, it returns an rwrite mes-
sage in which the length of the data written is 0.

Implementation of the CPU Command: FIGs.
24-26

As shown in FIG. 7, the Plan 9 operating system
is preferably implemented in a distributed system 701
which includes high-performance CPUs 703 and file
services 705 as well as Gnot terminals 711. While any
program may be executed on the processor in Gnot
terminal 711, it is generally more efficient to employ
the Gnot processor to execute interactive programs
such as editors or debuggers and to use a high-per-
formance CPU 703 for the execution of com-
putationally-intensive programs such as compilers or
data base systems. To do so, a user at Gnot terminal
711 who is running the shell employs the CPU com-
mand.

The CPU command takes as an optional argu-
ment the name of a CPU 703; if no argument is sup-
plied, a default CPU 703 is selected. When the user
inputs the CPU command, either by typing it or select-
ing it with the mouse, the result is that the window in
which the user inputs the CPU command becomes
the window for a process 102 which is running on the
CPU 703 selected in the CPU command. The process
102 is executing the shell program, and consequently,
the user can execute other programs on the CPU 703
simply by specifying their names to the shell. An
important consequence of the manner in which the
CPU command is implemented is that the process
102 running on CPU 703 has a name space 115 which
is substantially the same as that of the process 102
which executed the CPU command on Gnot 711. A
given path name will generally resolve to the same file
in the process 102 running on CPU 703 as it does in
the process 102 running on Gnot 711; the only differ-
ences are those made necessary by the change in
location. For example, the files in the process service

53 EP 0 466 486 A2 54

will contain information about the processes on CPU
703, rather than those on Gnot 711.

FIG. 24 provides an overview of the relationships
between the components of a system 701 before and
after execution of the CPU command. The section of
the figure labelled 2401 shows the relationships bef-
ore execution. A CPU 2403(a), which could be the
CPU of a Gnot 711, is running a user process 2405(a).
Through file system 109(a), user process 2405(a) is
reading from and writing to files on file service 2411,
one of file services 705, via network 2409, which may
be made up of networks 713, 715, and 709. User pro-
cess 2405(a) is also using file system 109(a) to per-
form operations on files provided by window service
1405, and is thereby controlling display, keyboard,
and mouse 2407 (a), which in this case are the display,
keyboard, and mouse of Gnot 711. CPU 2403(b),
which is one of CPUs 703, has nothing whatever to do
with the interactions between user process 2405(a)
and other components of the system.

At the time the user process 2405(a) receives the
CPU command, it is running the shell program. In res-
ponse to the CPU command, the shell program
creates a child process 102 which has the same envi-
ronment, including name space 115 as user process
2405(a) and suspends itself until the other process
terminates. As will be described in more detail below,
the child process sets up CPU service (CPUS) 2413.
CPU service 2413 sends a message to processor
2403(b) which results in the creation of process
2405(b) in processor 2403(b). Thus, after execution of
the CPU command, user process 2405(a) has ceased
running on CPU 2403(a), and user process 2405(b) is
running on processor 2403(b). User process 2405(b)
is reading to and writing from files by means of file ser-
vice 109(b). Because user process 2405(b) has sub-
stantially the same name space 115 as user process
2405(a) had, the files being read from and written to
are those provided by file service 2411 and those pro-
vided by the services 123 which executed on CPU
2403(a). Included in those files are of course those
provided by window service 1405. Operations on the
files provided by services 123 located on CPU
2403(a) are handled by CPU service 2413. When user
process 2405(b) specifies an operation on a file pro-
vided by a service on CPU 2403(a), file system 109(b)
converts the operation into a tmessage which goes
via network 2409 to CPU service 2413. CPU service
2413 then uses file system 109(a) to perform the oper-
ation specified in the tmessage on the file in CPU
2403(a) and returns the result via an rmessage. From
the point of view of user process 2405(b), CPU ser-
vice 2413 is thus a service which provides files from
the name space 115 of user process 2405(a) to user
process 2405(b).

10

18

20

25

30

35

40

45

50

55

28

Implementation of CPU Service 2413: FIGs. 25
and 26

FIG. 2413 is an overview of a preferred embodi-
ment of CPU service 2413. Along with window service
1405, CPU service 2413 illustrates the simplicity,
flexibility, and power of Plan 9 services 123. CPU ser-
vice 2413 has a number of component processes 102.
The name space 115 of the component processes
includes a copy of the name space 115 of user pro-
cess 2405. Communications process 2503 receives
tmessages via CPU pipe 2501 from file system 109(b)
and writes the messages to service pipe (SERVP)
2505. Multiplexer process (MPX) 2507 reads service
pipe 2505 and responds to the tmessages by perform-
ing operations on files in CPU service file system
2523. There is a service file 2521 in file system 2523
corresponding to each file 2513 which user process
2405(b) has open in a service 123 located in CPU
2403(a). rmessages resulting from the operation are
returned to file system 109(b) via CPU pipe 2501.

File access operations on open files 2513 are per-
formed by open file processes 2511. There is an open
file process 2511 for each open file 2513; each open
file process 2511 has a separate pipe 2509 by means
of which it receives file access tmessages concerning
its file from multiplexerprocess 2507, and each pro-
cess 2511 is connected to service pipe 2505. Each
process 2511 further has as part of its data a file des-
criptor 2517 for its open file 2513. After responding to
afile access tmessage from multiplexer 2507 by using
file descriptor 2517 to perform the access operation
on its open file 2513, the process 2511 writes the
results of the tmessage to service pipe 2505 as an
rmessage from an open file process 2511. Multiplexer
process 2507 responds to such rmessages by simply
writing them to cpu pipe 2501. As will be explained in
more detail later, information needed by each of pro-
cesses 2511 and 2507 to carry out its operations is
contained in a service data structure (SRVI)) 2519 for
each of the processes 2511 and a service data struc-
ture 2515 for multiplexer process 2525.

FIG. 26 shows a detail of service data structure
2623 and of the data structures used to represent files
in CPU service file system 2523. Beginning with ser-
vice data structure 2623, field 2625 contain pointers
to the procedures which the process to which service
data structure 2623 belongs use to carry out file oper-
ations. In the case of MPX SRV data 2525, there is a
procedure for each of the service file requests. The
procedures for all requests other than read and write
perform operations on file system 2523; the proced-
ures for read and write perform write operations to
pipe 2509 for the file’s open file process 2511 and
thereby pass the operation on to open file process
2511 corresponding to the file 2513 being read or writ-
ten. In the case of open file SRV data 2519, there are
only procedures for the read and write operations, and

55 EP 0 466 486 A2 56

these simply perform the relevant operation on the file
specified by FD 2517 for the open file process 2511
and write the rmessage received in return to service
pipe 2505.

The remaining contents of SRVD 2623 are the fol-
lowing: RFD 2627 is the file descriptor which the pro-
cess to which SRVD 2623 belongs uses to read
messages; WFD 2629 is the file descriptor used to
write messages; DSIZE 2631 is the size of DATA
2637; thdr 2633 contains the tmessage header when
a tmessage is read ved by the process on RFD 2627;
rhdr 2633 contains the rmessage header when an
rmessage is written by the process on WFD 2629; and
DATA 2637 contains the data for the tmessage or
rmessage. In MPX SRVD 2515, WFD 2629 is a file
descriptor for the file in service pipe 2505 to which
messages read by MPX 2507 are written (i.e., MPX
2507 writes messages to itself) and RFD 2629 is
invalid. In OF SRVD 2529, RFD 2627 is a wile descrip-
tor for the file in pipe 2509 from which open file pro-
cess 2511 reads messages and WFD 2629 is a file
descriptor for the file in service pipe 2505 to which
open file process 2511 writes messages.

Continuing with CPU service file system 2523,
that file system is implemented using the data struc-
tures appearing under 2523 in FIG. 26. Each CPU ser-
vice file 2521(i) provided by CPU service 2413
corresponds to a file 2513(i) provided by a service
executing on CPU 2403(a) to user process 2405(b)
operating on CPU 2403(b). Each CPU service file
2521(i) has an entry in file pointer array (FPA) 2603.
Each entry 2605(i) is indexed by fid 331 provided by
file system 109 in tmessages requesting operations
on file 2513(i). The fields in the entry are the following:
FP 2607 is a pointer to file entry 2615, which contains
information about open file 2513(i) corresponding to
service file 2521 (i). FD 2609 is a file descriptor for
open file 2513(i); OFPPID 2611 is the process iden-
tifier for open file process 2511 (i) corresponding to
open file 2513(i) and service file 2521 (i); and open file
process pipe (OFPP) 2613 is an array of file descrip-
tors for pipe 2509(i). File entry 2615 contains infor-
mation about open file 2513(i). The information is
obtained in the course of the walk requests from file
system 109(b) which locate file 2513(j)). FNAMEP
2617 is a pointer to FNAME 2619, a string which is the
path name of file 2513(i). QID 323, DEV 315, and
TYPE 313 are the corresponding values from channel
301 for file 2513(i). REF 2621 is a reference counter
which indicates whether FE 2615 can be reused. In a
preferred embodiment, file pointer array 2603 and an
array of file entries 2615 are created when CPU ser-
vice 2413 commences operation.

Operation of CPU Service 2413

Examples of operation of CPU service 2413 are
provided by the attach, walk, open, and clunk

10

18

20

25

30

35

40

45

50

55

29

requests. The attach request makes the file tree pro-
vided by a service 123 available to the process 102
making the attach request. The tmessage for the
attach request contains a fid 331 for the root of the ser-
vice 123 being attached to. If the attach is successful,
the rmessage contains the fid 331 and the gid 323 for
the root. In the case of CPU service 2413, the file tree
provided by the service is the file tree belonging to
user process 2405(a). When MPX process 2507
receives the tmessage, it invokes the attach function
specified in mpx process 2507’'s MPX SRVD 2515.
The function creates an FPAE 2603 corresponding to
the fid 331. In the FPAE 2603, fields 2609, 2611, and
2613 all have void values. Next, the function does a
stat request on the root, "(’, which returns the qid 323
of the root of user process 2405’s name space 115.
Thereupon, the function creates a file entry 2615,
places "™ in file name 2619, the qid in qid 323, and
sets the reference count to 1. After that, it sets the qgid
323 in thdr 2633 of SRVD 2525 to the gid 323 of the
root. Finally, it invokes the function "srvreply", which
makes an rmessage containing the gid and writes it to
service pipe 2505. When MPX process 2507 receives
the rmessage, it writes it to cpu pipe 2501.

The tmessage for the walk request contains a fid
331 associated with the gid 323 for a directory and the
name of a file in the directory; if the walk is successful,
the fid 331 is associated with the named file and the
gid 323 for the named file is returned in the rmessage
along with the fid 331. When MPX process 2507
receives the walk tmessage, it invokes the walk func-
tion specified in SRVD 2515. That function locates
FPAE 2605 corresponding to the fid 331 and then
locates file entry 2615 for the FPAE 2605. Next, it con-
structs the pathname for the file specified by the name
in the tmessage by adding the name for the specified
file to the path name contained in FNAME 2619.
Thereupon, the function does a stat request to get the
status information for the file specified by the path
name. Next, REF 2621 is examined. If REF 2621 has
the value 1, FE 2615 can be used for the named file.
In that case, the values for gid, dev, and type obtained
from the stat request are written to fields 323, 315, and
313in FE 2615, FNAMP 2619 is set to the path name
for the file, and gid 323 in thdr 2633 of MPX SRVD
2515 is set to the qid for the file. If REF 2621 has a
value greater than 1, a new FE 2615 is allocated, its
fields and thdr 2633 are set as described above, and
FP 2607 is set to point to the new FE 2615. There-
upon, an rmessage is returned with the fid 331 and qid
323.

The tmessage for the open request contains the
fid 331 for the file being opened and a value indicating
the mode of the opened file. The rmessage contains
the fid 331 and the qid 323 for the opened file. The
open function executed by multiplexer process 2507
in response to the open tmessage uses fid 331 to
locate the proper file pointer array entry 2605, locates

57 EP 0 466 486 A2 58

file entry 2615 for array entry 2605, and does an open
system call using the path name in fname 2619 and
the mode value. The call returns a file descriptor for
the file. Next, a pipe 2509 is created for the open file.
The file descriptor for the opened file is then placed
in FD field 2609 of array entry 2605 and the file des-
criptors for the pipe 2509 are placed on open file pro-
cess pipe field 2613. Then the open file process 2511
corresponding to the opened file is created and its
SERVD 2519 structure set up so that the open file pro-
cess reads from pipe 2509 and writes to service pipe
2505. The process identifier for the open file process
is placed in open file process pid field 2611. There-
upon, the qid field of thdr 2633 is set from file entry
2615 and the fid and qid are returned in the rmessage.

The clunk requestrequests service 123 to end the
association between a fid 331 and a qid 323. The
tmessage for the request contains a fid 331, and the
rmessage simply returns the fid. The clunk function
executed by multiplexer process uses fid 331 to locate
the proper file pointer array entry 2605. Having found
the entry, it terminates the open file process 2511
specified in field 2611, closes the file in pipe 2509
from which open file process 2511 was reading,
closes open file 2513 specified by the file descriptor
in field 2609, and sets fields 2609, 2611, and 2613 to
values indicating that the fields are not in use. Then it
decrements ref field 2621 in file entry 2615, and if the
decremented field has the value 0, it frees fname 2619
and sets file pointer 2607 in entry 2605 to 0. Finally,
it returns an rmessage with the fid 331.

Connecting CPU Service 2413 with User
Process 2405(b)

The child process 102 which was created when
user process 2405(a) executed the shell command,
and which has the same name space as user process
2405(a) first creates afile called "cpudir” in the file tree
provided by the kernel environment service and writes
the name its current working directory, which is that of
user process 2405(a), to the file. Then the process
uses the name of the CPU 703 specified in the CPU
command in the dial function, which calls the specified
CPU 703 over network 2409 for the user of process
2405(a) (which is also the user of the child process)
and on completion of the call, provides a connection
to the specified CPU 703, which appears in FIG. 24
as CPU 2403(b). Thereupon, service pipe 2505 and
the data structures for CPU service file system 2523
are created. Finally, communications process 2503 is
created and connected to the file descriptors for the
network connection and multiplexer process 2507 is
created and connected to service pipe 2505 and cpu
pipe 2501. Communications process 2503 of course
performs aread on CPU pipe 2501, and thus CPU ser-
vice 2413 is at this point waiting for input from user
process 2405(b).

10

18

20

25

30

35

40

45

50

55

30

In CPU 2403(b), there is a process 102 which lis-
tens to the connections to network 2409 and responds
when CPU 2403(b) receives a call from another entity
connected to network 2409. That process responds to
the call from user process 2405(a) by starting a child
process 102. Child process 102 gets the path name
for the file representing the network connection and
then does fokpgrp with the 0 argument to get a new
name space 115. Child process 102 sets up the new
name space 115 so that /dev/user contains the name
of the user which made the call, opens /srv/boot to get
a file descriptor for a connection to the root of the
default file service 2411, and binds "/" to "#/" and the
root of the file tree provided by file service 2411. Then
it uses the user name in /dev/user to make child pro-
cess 102’s working directory the user’s working direc-
tory and sets standard input, output, and error so that
they are connected to the network connection. Next,
more bind operations are performed. At the end of
them, /bin resolves to a directory which contains code
executable by CPU 2403(b), /bin has been unioned
with /lib/rc, which contains the code for the shell pro-
gram, and the kernel services have been bound to the
proper points in stub file tree 601. At this point, child
process 102 forks to produce user process 2405(b),
which inherits child process 102’s name space 115.

User process 2405(b) executes the shell prog-
ram, giving it the name of a program called CPUserve
which finishes setting up user process 2405(b)’s
name space 115. Next, user process 2405(b) does a
system mount call with the replace option which
mounts the directory "/mnt/term" on the file descriptor
representing the network connection. /mnt/term is the
directory in user process 2405(b)’s name space which
is used for files by which which a keyboard, mouse,
and display are controlled.

As a result of the mount, "/mnt/term" now includes
the files in user process 2405(a)’s name space 115.
Included in these files is the directory /fd 609, whose
files have as values the file descriptors presently
being used by wuser process 2405(a). The
files /fd/0, /fd/1, and /fd/2 thus contain the file descrip-
tors for std in, std out, and std error for process
2405(a). Since process 2405(a) is using window ser-
vice 1405 and has bound the file cons provided by
window service 1405 to /dev/cons, the file descriptors
for std in, std out, and std error will specify the file cons
provided by window service 1405. User process
2405(b) then closes its own std in, std out, and std
error, thereby freeing up file descriptors 0, 1, and 2,
and immediately opens the files specified by the des-
criptors in /fd/0, /fd/1, and /fd/2; consequently, reads
and writes on std in, out, and error in user process
2405(b) result in reads and writes on cons in user pro-
cess 2405(a), which in turn represents the keyboard
and display in terminal 2407(a).

Similarly, as a result of the mount, /mntiterm
includes the directory /mntiterm/env, which in turn

59 EP 0 466 486 A2 60

contains the file "cpudir", which was set by user pro-
cess 2405(a) to contain user process 2405(a)’s work-
ing directory. User process 2405(b) next
opens /mnt/term/env/cpudir, does a read on it, and
executes the shell specifying the change directory
command. The value read from "cpudir is used as an
argument in the change directory command, and as a
result, the new shell begins running in the current
directory of user process 2405(a). The new shell then
executes a user-defined shell scriptwhich is run every
time the user executes the shell and which may
further personalise user process 2405(b)’'s name
space. Typically, the shell script will include shell
commands which result in the execution of system
bind calls which do the following:
bind("/mntterm/mnt/8.5","/dev/",AFTER)
bind("/mnt/term/mnt/8.5/cons","/dev/cons",REP
LACE)
The first bind call binds the files in 8.5, which are the
files provided by window service 1405 to user process
2405(a), D /dev; since the AFTER option was used,
all previously-bound directories will be searched for
the files provided by window service 1405 before its
directory will be searched. The second bind call binds
the file cons provided by window service 1405
to /devi/cons. /dev/cons itself is the result of an earlier
binding in which the #c kernel device was bound
to /dev; consequently, it is that file to which the file
cons provided by window service 1405 is bound.
Since REPLACE was used, the path name /dev/cons
will henceforth refer to the file cons provided to user
process 2405(a) by window service 1405, and reads
from cons will receive data input at the keyboard of
terminal 2407(a), while writes to cons will display data
on the screen of terminal 2407(a).

Conclusion

The foregoing Detailed Description has disclosed
to those of ordinary skill in the arts to which the inven-
tions pertain how an operating system may be con-
structed in which a process may have its cwn
hierarchy of names and may modify the hierarchy. It
has further been shown how a service may represent
an entity as a set of files, how operations on the files
may be used to control the entity, and how all services
may employ the same set of file protocol messages.
Additionally, the Detailed Description has disclosed
how services may be constructed for the operating
system which offer every process an independent tree
of files and which may form a recursive hierarchy in
which a first one of the services is a client of a second
one of the services. Also disclosed is a novel type of
user interface to a computer display which is
implemented in a service employed in the operating
system. There has finally been disclosed a technique
whereby a process executing on one processor may
employ a name space for a process executing on

10

18

20

25

30

35

40

45

50

55

31

another processor.

Claims

1. A multiprocess operating system (101) charac-
terized in that:
the operating system may provide more
than one name space (115) and
more than one process (102) may be
associated with a given one of the name spaces.

2. The multiprocess operating system set forth in
claim 1 further characterized by:
new name space creation means (827,
802) available to any process for ending the
association of the process with its present name
space and associating the process with a newly-
created name space, the new name space crea-
tion means being distinct from any process
creation means.

3. The multiprocess operating system set forth in
claim 1 further characterized by:
name space modification means (801) for
changing the binding of any name in the name
space associated with the process.

4. The multiprocess operating system set forth in
claim 3 further characterized in that:

the name space madification means

changes the binding of a first name in the name

space by relating the first name to a set of names.

5. The multiprocess operating system set forth in
claim 4 further characterized in that:
the set of names is a set of names which
is already in the name space.

6. The multiprocess operating system set forth in
claim 4 further characterized in that:
the name space madification means
changes the binding of the first name by relating
the first name to a further set of names.

7. The multiprocess operating system set forth in
claim 6 further characterized in that:
when the name space madification means
relates the first name to the further set of names,
the name space modification means may in the
alternative replace the set of names with the
further set of names and union the further set of
names to the set of names.

8. The multiprocess operating system set forth in
claim 7 further characterized in that:

when the name space madification means

unions the further set of names to the set of

10.

1.

12

13.

14.

61 EP 0 466 486 A2

names, it specifies an order as between the
names originally in the set of names and the
names in the further set of names.

The multiprocess operating system of claim 2
further characterized in that:

the new name space creation means is
capable of either associating the process with a
new name space which is a copy of the process’s
present name space or with a new name space
which is empty.

The multiprocess operating system of claim 2
further characterized in that:

the names in the process’s name space
represent entities which may be made accessible
to the process;

the operating system further includes
means for making any of the entities accessible
to the process; and

once one of the entities becomes access-
ible to the process, the accessibility is not affec-
ted by creation of a new name space for the
process.

A computing system of the type wherein a
plurality of services (123) provide entities (125) to
a plurality of clients (102), the computing system
being characterized in that:

each of the clients includes means (109)
for providing requests (119, 121) from a fixed set
thereof to at least one service; and

each of the services responds to requests
belonging to the fixed set.

The computing system set forth in claim 11,
further characterized in that:

the entities provided by the services take
the form of files; and

the requests are requests for operations
on the files.

The computing system set forth in claim 12,
further characterized in that:

the requests include an attach request;
and

each of the services includes means for
responding to the attach request by making inst-
ances of the files provided by the service avail-
able to the client making the attach request.

The computing system set forth in claim 13,
further characterized in that:

each client has a name space (115) for
locating named entities;

each service provides a set of file names
(1501); and

in the course of ming an attach request, the

10

18

20

25

30

35

40

45

50

55

32

15.

16.

17.

18.

19.

62

client ming the request incorporates the file
names in the set of file names into its name
space.

The computing system set forth in claim 14,
further characterized in that:

the requests include a walk request for
locating afile by name, the walk request including
a first identifier provided by the client for the
named file and the name of the named file; and

each service responds to the walk request
by searching for the file by name and if the file is
found, associating the first identifier with a second
identifier provided by the service.

The computing system set forth in claim 15,
further characterized in that:

the requests include a clunk request for
disassociating the first identifier from the second
identifier, the clunk request including the first
identifier, and

each service responds to the clunk request
by disassociating the first identifier from the sec-
ond identifier.

The computing system set forth in any of claims
11 through 16, further characterized in that:

first ones of the services are kernel ser-
vices (203) to which requests are made in the
form of operating system calls (217,219); and

second ones of the services are protocol
services (209) to which requests are made in the
form of messages (205,207).

The computing system set forth in claim 17,
further characterized in that:

the kernel services include a mount ser-
vice (203) which receives first ones of the
requests in the form of operating system calls and
translates the first ones of the requests into cor-
responding second ones of the requests in the
form of messages.

A method employed in a computer system for
altering the manner in which input consisting of a
sequence of character codes is sent to arecipient
thereof, the method characterized by the steps of:

receiving the inputin a first mode such that
receipt of a certain one of the character codes in
the string causes characters in the sequence pre-
ceding the certain one of the character codes to
be sent;

setting a value in the entity receiving the
input to indicate a second mode in which the cer-
tain one of the character codes is to be ignored;

receiving the input without regard to the
certain one of the character codes until the value
is set to indicate the first mode;

63 EP 0 466 486 A2

sending the entire received input; and
again operating in the first mode.

20. The method set forth in claim 19 further charac-
terized in that the computer system includes dis- 5
play means and the steps further include:

causing the display means to display the
input according to a first display mode when the
value does not indicate the second mode; and
causing the display means to display the 10
input according to a second display mode when
the value indicates the second mode.

21. The method set forth in any of claims 19 though
20 further characterized in that: 15
the computer system includes a keyboard;
the step of serving the value to indicate the
second made is performed by strinking a key on
the keyboard; and
the step of receiving the input continues 20
until the key is next struck.

22. The method set forth in claim 21 further charac-
terized in that:
the step of setting the value is alternatively 25
performed under control of a program executing
in the computer system.

30

35

40

45

50

55

33

EP 0 466 486 A2

/— PG 103(0) — /—P6 103(z) —,

| 105
108 107

107
I —
FS l 17(0)]
8™\ [XI-—L—|Y ()i
FA
" e T e B
l A 0 6 H I
T 1s0) M 0 115)
B ¢ Ly KT
119 121
e B
' 1123(a) 127 |123(b) 123(k) !
— ! —
|18 -4 D N L 6 H .
1ot ' 125(0) 125(0) T
| B C—1¥ 125(b) I J K |
. soweests |
FIG. 6
1603
601 I
I AL]] l | I
dav boot fd pro¢ env bin srv
605 607 609 610 61 613 615
b7 | =(l juIf) 623
| I | I I | IB 1
dev= boot fd= proc env bin=)
§C }d (M1/68020/bin,
619 621 §MI/lib/rc)

625
34

cs

215

A\

EP 0 466 486 A2

MS 203

'207 205

2051
- - -

[207

IPS
216

NS
214

(713, 715, 709)

=

t'lzw 2031' 207

.
!_

051 “150'7_205
211(n

L___ RPS [213(n)
211 213(0) (705)
\ PS 209 /
FIG. 3

K 308 301

R 307

NEXT/OFF 309

TeE 313

D KSINFO 311

NOOE 319

TR AINFO 317

W 323

WOURT PR 327

NOUNT 1329 jumro 325

D 31

WK 5%

PCHAN 357] PSINFO 335

NQD 339

35

EP 0 466 486 A2

FIG. 4

07 .
I——‘—' ROOT
ELEN 405 . TS
a | proy 423
— ~USER 403 |
’ 21
F‘D7l': FOAE 415 lm FC“”; 49
4
% E P i
TOA 413 o FCHAN 419
FIG. 5
337
an | > ~1 PCHAN
FC
505 NNTE 507 313 517
W= s 1 wn [
. 509
: ! —:PROC
MNTA
507] OO N 511
519
l N 527
d i
- o
-y
B ;:g: 526 P29 521 F-- 52
—~—
%2 r——S—D.PROC
520 NNTHOR
521 531
501
MNTBUF
_ 533

36

EP 0 466 486 A2

DISTRIBUTION NETWORK

DISTRIBUTION NETWORK

o3

NATIONWIDE LONG HAUL

A

~~_ 715

1

n
|

CPU v cry CPY

CPY

cPy »Lm
|

' HIGH SPEED DWA : '

HIGH SPEED ONA T~ 109

FILE FILE

FILE

ALE

{m

f*l 705
™

m}

=

-

FIG. 15
1501 | Itsoz
bit bt held I b mouse snarf
LI ' A 1515
1505 1509 1513

37

EP 0 466 486 A2

; FIG. 8
B w5 e MO 80%)
327] 419(0) | 337 REF 811
LCHAN 802(o) ; {go7 | TERM 813
- 5 | NouNTio + 8% pokan gofe)
—— — 803 321 | 419(b) | 337
10 [an_{ —8\:
USER _82: PROC 8/2 6 PGRP 2 FChiN e
403 85 [] 87 27| 419(c) | 337
809(b) 823/‘1
PCHAN 517
FIG. 9
/LCHAN 802(b) 803(b) 809(c) el #/RCHAN 804(c)
7 | 37
L |eos(e) e M/ 804(d) .4
327~\:—}:\. 327 3.7
—{ #/bin B02(c) [w——d 803(c) 809(e) JNI/68020/bin 804{e) gg
| W | ==
809(f) NI/lib/re 804(f)
—| #/dev 802(d) e 803(d) ——={ 803(g) §C 804(g)
—{ #/1d 802(e) [e—iB03(o) bee{ 809(h) el §d 304({h)

38

EP 0 466 486 A2

FIG. 10
(PATH NAME, ACCESS MODE, OPEN MODE)

m 1003 RETURNS CHANNEL

q/_loos JJOW

Cny D mnm YR 1013
YES

Jves) 1on /
NCHAN ATTACH DEVICE At -
e
Z ROOTCHAN ‘ WDIRCHAN
1009
NCHAN | 1015
DEVCHAN
GET NEXT EL —1017
|
1004 N\ N0
1019 NCHAN=LCHAN? >
§ YES
NCHAN
Jﬂ"\ el em—
1021 v
¢
‘ w7 -
GET NEXT EL , 2,5_, -r
! LY
l o B T = o
dYES
b~ NN WK T0 6T Te .
TCHAN FOR CURR EL 1 .
WALK TO GET TCHAN NO /" ACCESS MODE b
1039 1~ FOR LAST EL ' = CREATE? 1083
I YEs
1061 _4~ PROCESS AS REQ | DO CREATE W/LAST 1057 1073
1 o Access wooe _r ELRETICHAN P 0
| NCHAN
1063 1
Towr__[—~oEan o) ~oss

39

/\

EP 0 466 486 A2

1103 FIG. 11
- (CHANNEL, ELEMENT, MOUNT 0K)
HRST-'-LECHMHV 1105 RETURN CHANNEL
o 119
— 4! 1101 (
VALK REQ 07 D CCHAN FLAG =
— ~CNOUNT
1107 C 121 ’
j CCHIN =\ N0 FIRST = 07
CHOUNT?
108 Ts—/ YES
]
GET MOUNT FOR CLOSE ARGCHAN
CCHAN.MOUNTPTR S——1111 <
123
MOUNT 15 AT _YES
LIST END? s B
113
12 ST =0 D
o GEI'EK;(T)HAN
OM NEXT MOUNT]
I AT L |
TCHAN I CLOSE CHAN
waifmgtu—
MCHAN
RETURN 0 147
T 1149
TCHAN MOUNTPTR
——— A~ 1125
MOUNT
3
CCHAN 1135 0 4
=l L CCHAN = LCHAN?
T 1~/ [res
FIRST = 0 K/IIZQ 1361 CCHAN
RCHAN
1143 |
, CCHAN.MOUNTPIR
lf——
L MOUNT

EP 0 466 486 A2

FIG. 12

1203»\(uoum)
1205% NOUNT POSS? >————C ERROR _)

(OLD CHANNEL, NEW CHANNEL, FLAG)

RETURN MOUNT D

1207
1209%0 IN MOUNT TAB%
luo
GET EMPTY NTE
121779 e prr 805 T0 0D
SET NEW.FLAG
3™ 1o CuouNT 12<7
'
YES NEW.FLAG
1215\< UG = CREATED——‘ °'34/c"'§'mc
]
"°Jf 1237
/

1201

, 2 ” BEFORE

C ERROR j

1231

GET NEW MOUNT,

SET PTR TO NEW

1z SWITCH ON FLAG
C N OTHER DIR? >——'—|

1219 (ERROR D

t ves

1227 N OTHER DIR? >

REPLACE 1221 1235 N0

1225 |

PUT NOUNT AT HEAD ~ PUT MOUNT AT TAL

\. 1233 <
‘ |
I REPL, SET 23
TERN N NOUNT

) :

1234 1241 ~RETURN MOUNT 10)

41

EP 0 466 486 A2

FIG. 13 1305
DE1303
o0Fg NANE 1315
W 1317
i =
13 i
S BN -~ WOoE 108
\ [YR =1 1314 ATME 1325
. AL LR HIIN i WINE 1327 |
d 103 (st 13] 1303 PCHAN 517| [TENGTH_ 1329 |
; e > . Ui 31 |
| — L o0 1333
\ Y
1302 1310 1302
e, 14 () (o)
205, 207 T
l——o3(0) 5.0
ws s sy |, M [T,
| i
___________ ,
L i | .- 1
il_409(0.k))
! 9
w2
S Sp— -T .._l
JOEV/MOUSE || /oev/emeLr JDEV/CONS
43 s | 1419
RN LIEEN Hc 1_41_7J
1425
1421
L~ 1429

42

1431

EP 0 466 486 A2

FIG. 16 205(1), 207(1)
601 :t‘ LU
NG 1621(2)
----------------- ‘_-ﬁ r—---— e .
1405(1)J: , tet7(1) |
| 1613(1) 1609(1)
161)_,.!
1s1cg(o) Isg(l) ! 6051y)
| 1604) .
1619(0) T — - — -
(0)
T Waso o [
NC 1821(1) 0206/ C._\()sro \ ’kuos(o)
SO e 10 | [
' 1611(0) 1613(0) |
— 1509(0)“\4 |
kS
. 9050))
Ru&ér&tiss) -2 38 READ (CONS) 1606(0)
NG 1621(0) 1 1411 —2 e e 1419

14211 ‘1425

217(0), 218(0)

a

EP 0 466 486 A2

FIG. 17
1701 1703 (PATH NAME, COUNT)
o RETURNS PID
1705~ | FO1 = OPEN A—
1711 (PATHNAME) , 1737
1708 m;sm 5)
1713 N
FORK ERROR FORK SWITCH ; CLOSE (FD1)
1
' - (ReruN o
NC 16210} 4717 _+- FoRk-poR ;
---ﬂ-__..-____-__,_____,_i _____________ i 1739
NOUNT F02 = OPEN
W) /o) [T) 7
1735

1731

1733

READ (FDI)W/‘ 1725

18

WRITE (F02) < 1729

______ FIG. 18
[— FA 1803 _]
;130' l 1805 l 1801
— BUSY 1807 Prrrrhy T
O P 'i | FLE 1813 |
| [P i riﬁ%?_igg_
i - Tl | E‘ '7
; l « |_SIOT 1819 ']moszs
| - | DPTR 1821
1805 e ep—
| I B OE 1823 |]
L [wTem T T v 1825 J'

4

EP 0 466 486 A2

| 1901
FIG. 19 —
T R T
W 1903 l
. REF_19085 ! TPIR 1847 '
BUSY 1907
§L07 1609 | = pll
' WOESC 1911 e
FRAME DESC 1913 1919
. ah 1914 LV [WOUFPRT 193] Jebewem
TEXT 1915 WTAG 1930
B T A O (K L |
CONS WRITE INFO 1919 T WONT 1943 |
[CONS_READ INFO 1921 | Syt ———————
r——-——#——-—_
NOU INFO_1923
i SERORETAr?ms = WEUF 1948 je—r
, WQPTR 1927 R
KBOC 1929 1933
SEND_1931 ! .
v | WINDOW STATUS 1833 | BITID 1949
BIT_READ INFO 1835 . FONTID 1951 B
2001 FIG. 20
KZ%COTQL — PRI [N TCTL 2015(0~n)
KEYBDC 1929
(B &
(1903(k)) - N
~J PAY | |
KBDC 2004 | | WD 2006 T < us |29
t W 1903(0-n)
| |
NCTL 0191 | 20 [je
2008 | | 1419
I
MM 2002
2'6109 205,207

45

EP 0 466 486 A2

FIG. 21 (SLOT) RETURNS PID
,’
2103
o /2105

— QOPEN SYNCH PIPE | 2118

2109 2107
CHILD
RETURN -1 FORK SWITCH -
213 FORK=PGRP(0)
2111 PAR T
2115 _—F reap SyncH PRE | 412V N\ WRITE SYNCH FiPE

2123\ r
a7 RETURN PID 128 [MOUNT (CFD, PATHNANE, SLOT)

Ny
2127 _-FCLOSE SYNCH PIPE pe——=—] BINO (PATHNAMES, DEY, BEF)
b
2129 —F " CLOSE (5FD) J—————e] CLOSE STOO _}~ 2131
'}
2135 . GPEN (JDEV/CONS, WRITE) QPEN(/DEV/CONS, READ)
1w/
0P (1,3) EVEC SHELL
\ N
23 2139
I" ""mi—_]
|
i—cuasoa P 2zos.j
N9 201
TEXT 1915
FIG., 22 [W |
o)
RFID 220i ——— e -
[_ RONT 27080 f_ “°§ ;‘3]
RPR 192 e fg |
[Raoc 192] S —
[v

EP 0 466 486 A2

L 3203 l 23{5
GET CHAR FRON 1 T YES
KADC 1829 FIG’. 23 'No >'—"
NO 135 l
CHAR = ESC? 2335 GET NEW RQE 221342317
YEs 2303 S [
: RTAG= NESS.TAG
TOGGLE HOLD 22112307 Rnrm- usss.(.r:m - Azﬂw%o" L T8
[CUT NESS.CUT : L
SET CURSOR AS
REQ BY MO | 209 SCHEDULE T AT B0 OF o
\
1 ' 2337 T
SET SCR BORDER | . o 2323 2313
AS REQ BY HOLD L _
‘ a0 1ES l
137 A~ N=MN N«MIN (RCAT, L~—~23%
(RENT, NLPOS-gh) TEXTEND-gh)
2323 }L S |
509 g O R c;ms WOVE b 12331
FIG. 24
[cPy 2403{s) |]
W FILE SERVICE 2411
2401(a) 2405(0) T u0xp) |
] - -

FS 109(a)

- ——— e —

CPUS
) i) 2413

"

- — . —

47

FILE SERVICE 2411

EP 0 466 486 A2

_ [P o
3 FIG. 25
— , " 2521(n) . _
! |
| SF
2521(0)
- | SERVP 2505
P ' NEOH
OFP 2511(0
N~ 0 alk
1]
¥ B CPUP
| SRYD =] CON 2501
B51%0) | | gy || ||| PROC /
I~] %03 /|| _
5170) | s | ! |] ! __ 5
— - _ _i ! ——— &
- ~ =
! MPX
2521(n) ' =\ 2507
2509(n)
3
MPX
SRVD
2515
L FIG. 26 e
[rea2s03 | TSR 2683 |
| - — - } s e e =
1P 2607 He—n{ TANEP 7517 hr~—w{ FNANE 7613 |
FD 2609 | a0 523 \ WD 2627,
[_OFPPID 2611 | DEV 315 " WED 2629 |
| Corep 2613]| ([CTPE 3131, DSIZE 2631 |
- |CREm ' THOR 2633 !
(e - RHOR 2636
] = | oaTa 2637 |
.-"::":-_“'——J—-

48

