
C Programming in Plan 9 from Bell Labs

Pietro Gagliardi

ABSTRACT

This paper is an introduction to programming with Plan 9 from Bell
Labs with the C language. Plan 9 provides not only a significantly
improved version of C, but also a number of programming libraries to
simplify complicated tasks. This paper is meant to be a supplement to
the manual pages, other documents provided by the system in
/sys/doc, and a programmer�s literature collection.

1. Introduction

Plan 9 from Bell Labs has always been a system above the rest: simple, portable,
and feature-complete. It isn�t UNIX;® rather, it improves on the basics of UNIX by provid­
ing a number of features absent from most other operating systems. One of those fea­
tures is a great programming environment that rivals UNIX�s. Plan 9 is fully Unicode-
conformant through its nearly universal use of the UTF-8 encoding, brought to us by
two of the people that brought us Plan 9. It not only keeps the C language of old, but
through the work of Ken Thompson, it provides a C that makes some otherwise compli­
cated constructs straightforward. Backing this new C up is 33 programmability libraries
that significantly reduce the amount of code a programmer needs to write. And every
single line of this code is fully portable among different Plan 9 installations, even with
different architectures � the notion of a configure script has been vanquished at
last.

Learning programming with Plan 9 is not something that requires complicated text­
books and four years of college study to master. In fact, with just the manual pages and
pages of some documentation in hand, someone can quickly master the core concepts.
However, there sometimes is a need of a starter�s guide or tutorial to start with or to
clear up some uncertainty. That task is what this paper aims to do. This paper is not a
full reference to Plan 9�s programming environment � the manual pages do that. Keep
this in mind while you read.

You need to know how to use Plan 9 from Bell Labs, rc, an editor such as sam or
acme, and the C programming language to start. The official guide to C is Prof. Brian
Kernighan and Dennis Ritchie�s The C Programming Language, now in its second edi­
tion. Read through it: you�ll learn quite a lot.

2. Core Concepts

Here is Kernighan�s "hello, world"-printing program that has become quintessen­
tial, in Standard C and with a few differences from the one in Kernighan�s book (for
exposition purposes).

­ 2 ­

#include <stdio.h>

int main()
{

printf("hello, world\n");
return 0;

}

Now here it is as a Plan 9 programmer would write it.

#include <u.h>
#include <libc.h>

void
main()
{

print("hello, world\n");
exits(0);

}

Immediately, expert C programmers will say things like �Where did stdio go?� and
shout at the top of their lungs things like �You can�t declare main as returning void!�
If you�re one of these guys, then you better get used to it.

The include file u.h, stored in /$objtype/include where $objtype is an
environment variable storing the current CPU name, contains CPU-specific definitions.
All header files in Plan 9 use this, so it must be included first. Next comes libc.h,
stored in /sys/include. libc.h contains the definitions for the C library, which is
linked into every Plan 9 program. The C library consists of several parts:

� All the Plan 9 system calls (save for a few that only the library uses)

� A set of subroutines to facilitate using the system calls

� The formatted print routines

� Mathematical functions

� Time functions

� Functions for working with Unicode characters, or Runes

libc must be second; it is used by most, if not all, other libraries.

The print function is a member of the set of formatted print routines; it works
just like printf in C, with several minor differences:

� The %u format is gone; it has been replaced with the u modifier to other integer
formats. So instead of saying %−3lu, you say %−3uld.

� The %b format is provided for printing binary numbers.

� The %C and %S formats are provided for printing UTF-8 characters, called Runes,
and strings of Runes, respecitvely. They are discussed later.

� The ll modifier flag to integral formats prints vlongs, which are described later.

� The %r format prints the error string, which is described next.

� You can create your own formats; that is described later.

Otherwise, print behaves the same as printf.

exits and the void return from main require a bit of explanation. The tradi­
tional way of representing errors and status returns in C is with numbers: a return from
main or the argument to exit represents a status return from a program, and errno
stores information about error returns from functions. The traditional behavior is to
have zero mean no error and any other value mean error; ANSI C defines
EXIT_SUCCESS and EXIT_FAILURE for status returns from programs.

­ 3 ­

This gets restricted very quickly. ANSI C only defines three standard values for
errno (domain error, range error, and illegal multibyte sequence) and two values for
status return. And sometimes an integer won�t tell you enough. For example, let�s take
the UNIX lseek system call, which manipulates the file read/write position:

long lseek(int fd, long offset, int from);

If any argument is invalid (for example, from not 0, 1, or 2), lseek returns with
errno set to EINVAL (specific to UNIX). But this doesn�t tell you which argument was
invalid, or how many; it only says that something was not right. We can add the appro­
priate errno values to resolve this problem. But what about a library that defines over
1,000 values for errno? On machines with small int sizes, this chokes your program
and defeats the purposes of both sides.

A better idea is to give the programmer the ability to handle any error that comes
in without worry of losing standards compliance or clarity, and to generate any error
without falling into a surfeit of possibility. So the designers of Plan 9 decided to use
strings instead of numbers. Each program has an error string which is set by routines
when an error occurs. And each program returns a string to the host environment with
the exits system call. The value given to exits can be accessed from rc through the
environment variable $status.

So with a string, how do you represent a lack of error? Why, with a null pointer or
null string! Because the constant 0 turns into a null pointer, the statement

exits(0);

does everything already. Of course you can also say

exits(nil);

or

exits("");

nil, in u.h, is Plan 9�s NULL.

So how does this explain why main has to return void? You can�t return a string
placed in automatic storage from a function:

char *
f(void)
{

auto char s[] = "hello";

return s; /* WRONG */
}

But a programmer may store the exit status of a program in this way.

An Aside on Style

Plan 9 programs are usually written to conform to a predefined set of style guide­
lines, described in the manual page style(6), for the sake of uniformity. Here is a taste:

­ 4 ­

static
int
func(int f, char *g[])
{

int i, j;

j = 5;
acquirelock();
for(i = 0; i < j; i++){

process(i, &j);
if((j = g(&i)) == 0 ? h() : i()) /* g() affects h()/i() */

if(strcmp(s, t) == 0)
something();

}
return j − i;

}

Of course this piece of code doesn�t do anything sensible by itself. It was written to
show the basics of this style. If you want to contribute to Plan 9, be sure to use this
style. Of course, you can still use your favorite style elsewhere.

3. Compiling Programs

UNIX compilers give you the option of compiling a program in one shot:

$ cc a.c b.c # compile and link; creates a.out
$ a.out # run

or in pieces:

$ cc −c a.c # compile; creates a.o
$ cc −c b.c # compile
$ cc a.o b.o −lS # link; creates a.out. you can also use ld and omit −lS
$ a.out # run

Plan 9 gives you no choice but to do the latter, but with ld instead of cc for the final
stage. On top of that, there is no single C compiler and no single linker � there is one
of each for each supported processor architecture.

What are the benefits to this requirement? First, large projects can be built with
ease, just like make. (Plan 9 provides an improved variant, called mk, that I describe
later.) Second, it removes one possible error: mixing computer architectures. Third, it
promotes separation of tasks: the C compiler should not be expected to link.

Using this system is easy. All you have to know is the single character that denotes
your processor. For the Intel x86 family that is in most PCs, that character is 8. So I do

% 8c a.c # compile; creates a.8
% 8c b.c # compile
% 8l a.8 b.8 # link; creates 8.out
% 8.out # run

A complete list is in the manual page for the C compilers, 2c(1).

Also note that a special feature of the C compilers allows the linker to detect that
libc or another Plan 9 library is to be linked into the program without any extra flags.
I will get to that later.

4. Manipulating Files

In Plan 9, absolutely everything is a file � even processes (/proc), environment
variables (/env), and file descriptors (/fd)! What is a file descriptor? A file descriptor
is an integer that represents an open file. Files are opened with the open system call,
which returns one. The syntax of open is

­ 5 ­

int open(char *filename, int openmode);

openmode is one of the constants OREAD, OWRITE, or ORDWR, which define what you
intend to do with this file (read, write, or both), optionally combined with the constants
OTRUNC, OCEXEC, and ORCLOSE via bitwise OR (|). If OTRUNC is given with
OWRITE or ORDWR, the file is truncated to zero length. OCEXEC and ORCLOSE are
described later. open returns a valid file descriptor n such that ng0 on success, or -1
on failure.

It is an error to open a file that doesn�t exist, so the create system call is used to
create one. (Ken got his wish.) create takes the form

int create(char *filename, int createmode, int permissions);

If the file already exists, it is truncated to zero length. The permissions are just as
in UNIX: a three-digit octal number containing a combination of read, write, or execute
bits for the file�s owner, the group of the owner, and everyone else. For example, 0644
yields rw−r−−r−−, and 0750 yields rwxr−x−−−. createmode is either 0 or a bit­
wise OR of DMDIR, which creates a directory , DMAPPEND, which makes a file that can
only be appended to (i.e. a log file), DMEXCL, which makes the file openable by only
one program at a time, and OEXCL, which will cause create to fail if the file exists.

The read and write system calls read and write arbitrary data to the files:

long read(int fd, void *buf, long n);
long write(int fd, void *buf, long n);

read n bytes from fd into buf and write n bytes from fd into buf, respectively.
read returns the number of bytes read, while write returns the number of bytes writ­
ten.

Why do read and write seem to return their argument n? The truth is, they
don�t always do so. Let�s take read as an example. What if the end of the file is
reached before anything was read? Well, you read nothing, so read will appropriately
return 0. A write can fail if the disk is full.

Instead of using the low-level write, you can use fprintf. fprint, like
fprintf, allows formatted output to an open file. It takes, as an extra first argument,
the appropriate file descriptor. Note that there are no reading functions like scan; buf­
fered I/O via libbio, described later, provides the facilities.

The seek system call changes where reads and writes are performed in relation to
the file.

vlong seek(int fd, vlong amount, int from);

If from is 0, seek to amount from the start of the file. If 1, seek from the current posi­
tion. If 2, seek from the end. Note that amount goes to the right if positive and left if
negative regardless of from, so to seek five characters before the end, you say

seek(fd, −5, 2);

seek returns the position from the start regardless of from. On error, seek seems to
succeed; only by examining the error string can you detect an error. seek fails on
directories and does nothing on pipes.

What is vlong? It is a typedef-ed alias to long long. The C compilers, as
well as C99, provide the long long type, which provides access to very long integer
values, often 64 bits. There is also an unsigned variant. u.h provides the terse alias
uvlong. On a 32-bit processor like the x86, 64-bit values are simulated. For
instance, you can�t do

­ 6 ­

vlong v;

switch(v){
case a:

/* ... */
}

However, the mere fact that 64-bit values are available is promising.

Finally, the close system call says that you are done with a file you opened or
created. It takes the form

int close(int fd);

close should only fail (return -1) if fd is not really open, so just ignore its return
value.

Before I move on, I need to talk about three file descriptors that all programs have
when they are created. File descriptor 0 is standard input, which is the keyboard by
default and changed with rc�s <, <<, <{...}, and |. File descriptor 1 is standard
output, which is either the screen or the current rio window by default and changed with
rc�s >, >>, and |. So

print("hello");

is the same as

fprint(1, "hello");

File descriptor 2 is standard error. This allows you to give the user emergency output
in the case of an error, without fear of losing the error to redirected output. Standard
error can be redirected with the [2] modifier to the output redirection operators in rc.

5. UTF−8 Support

Plan 9 supports Unicode via UTF-8, however you need special provisions for han­
dling the extended characters. The special type Rune is large enough to store a UTF-8
character, which can be embedded into a C program using Standard C�s wide character
literal format L’character’. A string of Runes can be made in the same way as a
string of characters, and has the type "array of Runes." Most Runes can be entered
directly from the keyboard; see keyboard(6) for instructions and the file
/lib/keyboard for a complete list and their key codes.

A UTF-8 character or string can be output with the %C and %S formats to the print
routines, respectively. For example,

#include <u.h>
#include <libc.h>

void
main()
{

print("3 %C 4\n", L’d’);
print("%S\n", L"�ρχιµ®δης"); /* Archimedes */

}

The codes for capital alpha and lowercase eta with tonos (Unicode 0386 and 03AE,
respectively) cannot be entered with the keyboard; they were generated with a simple
program:

­ 7 ­

#include <u.h>
#include <libc.h>

void
main(int argc, char *argv[])
{

if(argc != 2){
fprint(2, "usage: %s hex−code\n", argv[0]);
exits("usage");

}
print("%C\n", (Rune)strtol(argv[1], nil, 16));
exits(0);

}

argc, argv, and strtol act as in standard C. If this program is compiled as
code2rune, you can say

% code2rune 0386
�

% code2rune 41
A

A Rune can be constructed from at least one char. This allows input of Runes
by reading a char and seeing if it can be used to begin a Rune. This is a simple
multi-step process:

1. Read a character.

2. If that character is less than the constant Runeself, then cast that character to a
Rune and return it. Otherwise, store that character in the first position of a buffer.

3. Read the next character into the next buffer position.

4. If the buffer from beginning to the current position is a full Rune, return that
Rune. Otherwise, return to step 3.

The function fullrune does the test in step 4.

int fullrune(char *buf, int n);

returns a nonzero (true) value if the n characters pointed to by buf make up a full
Rune. The function chartorune does the actual conversion:

int chartorune(Rune *dest, char *src);

turns the data pointed to by src into the Rune stored at *dest and returns the num­
ber of bytes of src used. On error, it returns 1 and stores the constant Runeerror in
*dest. The number of bytes shall never exceed UTFmax, a constant that defines how
many possible bytes may be in a Rune.

With all this in mind, we can write a function that uses read to read in a single
Rune from a given file descriptor and returns the number of characters read. It
behaves similarly to chartorune on error: it returns the number of bytes read, but
stores Runeerror.

­ 8 ­

long
readrune(int fd, Rune *r)
{

char buf[UTFmax];
char c;
long nread, n;
int i;

if((nread = read(fd, &c, 1)) != 1){
*r = Runeerror;
return nread;

}
if(c < Runeself){

*r = (Rune)c;
return nread;

}
buf[0] = c;
for(i = 1;;){

if((n = read(fd, &c, 1)) != 1){
*r = Runeerror;
return nread;

}
nread += n;
buf[i++] = c;
if(fullrune(buf, i)){

chartorune(r, buf);
return nread;

}
}

}

We can test this out in a program that reads Runes and prints them out, buffering the
output.

#include <u.h>
#include <libc.h>

void
main()
{

Rune rs[100];
int i;

i = 0;
while(readrune(0, &rs[i]) > 0)

if(rs[i] == L’\n’){
rs[i] = ’\0’;
print("%S\n", rs);
i = 0;

}else
i++;

exits(0);
}

Let�s try this out:

­ 9 ­

% readrune
a
a
abc
abc
3d4
3 4
d

ctl−d%

Something seems to be amiss. For every Unicode character I put in, something
gets eaten up and a mess of "I don�t have that glyph" symbols (Peter Weinberger�s
famous headshot) comes up. Our problem is declaring c in readrune as a char; if
we change it to uchar (a synonym for unsigned char), then we get this interactive
session:

% readrune
3d4
3d4
d+−4556
d+−4556
ctl−d%

There�s still a problem. Consider

% xd −c −b bad
0000000 e0 Q R S \n

0 e0 51 52 53 0a
0000005
% cat bad

?___QRS
% readrune < bad

?___S
%

Obviously incorrect. The ?___ means "this is not a valid Rune." It turns out that even
though fullrune may report that the buffer contains a Rune, it does not say that the
Rune is valid. In these situations, chartorune may give up, returning a number of
characters converted less than the number of characters read! This means we ate too
much. Fortunately, and if we�re not reading a pipe or directory, we can fix this with the
use of seek. Change the last if to

if(fullrune(buf, i)){
n = chartorune(r, buf);
while(i > (int)n){

seek(fd, −1, 1);
i−−;
nread−−;

}
return nread;

}

and everything works:

term% readrune < bad

?___QRS

The seek used says to seek -1 characters forward from the current position, or
one character back. In effect, this is ungetc from Standard C, except that it doesn�t
work on pipes or directories. There are other common uses of seek:

­ 10 ­

seek(fd, 0, 0);

seeks to the beginning of a file,

pos = seek(fd, 0, 1);

doesn�t change the file position but tells you where, from the beginning, you are, and

seek(fd, 0, 2);

goes to the end. This is done by default when opening a file that is append-only for
writing.

6. Buffered I/O

Let us write a program runecount that counts the number of Runes in a file.
The standard wc doesn�t do this; it counts the number of bytes. I have omitted the defi­
nition of readrune.

#include <u.h>
#include <libc.h>

long readrune(int, Rune *);

uvlong
runecount(int fd, char *filename)
{

uvlong n;
Rune r;

n = 0;
while(readrune(fd, &r) != 0)

n++;
print("%10ulld %s\n", n, filename);
return n;

}

void
main(int argc, char *argv[])
{

int fd, i;
uvlong total;

total = 0;
if(argc == 1)

runecount(0, "");
else{

for(i = 1; i < argc; i++){
fd = open(argv[i], OREAD);
if(fd == −1)

fprint(2, "can’t open %s: %r\n", argv[i]);
else{

total += runecount(fd, argv[i]);
close(fd);

}
}
if(argc > 2)

print("%10ulld total\n", total);
}
exits(0);

}

­ 11 ­

The file /lib/glass is a perfect file to test this program on; it contains transla­
tions of the phrase �I can eat glass and it doesn�t hurt me.� in many languages and using
Unicode characters. For example,

% grep ’^(French|Russian|Greek):’ /lib/glass
Greek: ΜπορÎ να φ¬ω σπασµ­να γυαλι¬ χωρ¯ς να π¬θω τ¯ποτα.
French: Je peux manger du verre, ça ne me fait pas de mal.
Russian: / <>3C 5ABL AB5:;>, >=> <=5 =5 2@548B.
Greek: ΜπορÎ να φ¬ω σπασµ­να γυαλι¬ χωρ¯ς να π¬θω τ¯ποτα.

To compare runecount with wc, let�s try them out:

% runecount /lib/glass
6715 /lib/glass

% wc −c /lib/glass
8517 /lib/glass

So /lib/glass has 6,715 Runes that fill up 8,517 bytes.

It turns out that when running runecount, I had to wait a while before getting
any output, while wc returned immediately. The time program will tell me how long a
program runs, so let�s try it on runecount:

% time runecount /lib/glass
6715 /lib/glass

0.02u 1.24s 6.74r runecount /lib/glass

This tells that the program took 6.74 seconds to run, with 1.24 seconds in the kernel,
0.02 seconds in user space (that is, main, runecount, and readrune), and the rest
doing various other things that I really don�t know about (sorry!).

wc is faster than readrune because it buffers its input. A buffer is an in-
memory array of a number of data objects. When you ask to acquire a character from a
character buffer tied to a file, it first sees if there is a character in the buffer. If there is
a character, the character is removed from the buffer and returned to the user. If not,
then the buffer is filled by reading enough characters to occupy every element of the
buffer array, and the first character in the buffer is removed. readrune, however,
does no buffering, so a new character has to be read every time.

Fortunately, Plan 9 provides not one but two ways of buffering input and output.
The first is libstdio, which works just like in Standard C. But this doesn�t support
Runes, so we can�t use it. It also has several other restrictions that I won�t go into.

The second is libbio, with manual page bio(2). libbio is a library for buffering input
and output in much the same way as libstdio, but provides a higher level of abstraction
and full Rune support. In fact, our readrune function is based on libbio�s equivalent
function! To put libbio into your program, just do the following:

#include <bio.h>

This must follow the #include of libc.h.

The next step is to make a new Biobuf, which is the libbio equivalent to FILE.
Note that I did not say that it was equivalent to FILE *. This is because there are two
ways to connect a file to a Biobuf, with each method working differently. The first
method actually opens a file:

Biobuf *Bopen(char *filename, int openmode);

openmode is either OREAD, to indicate reading, or OWRITE, which creates the file
with mode 0666 (rw−rw−rw−). It returns a pointer to a dynamically allocated
Biobuf, or nil if error.

­ 12 ­

You can also connect a Biobuf to an already open file:

int Binit(Biobuf *bp, int fd, int mode);

bp is a pointer to an already allocated Biobuf, either created explicitly by the compiler
or dynamically allocated with malloc. The entire malloc family of routines is pro­
vided by the C library. In this case, openmode is the same as in Bopen, except
OWRITE does not create the file. It returns the constant Beof on error. You can use
this function to wrap the standard file descriptors to libbio; this is the only way to do
formatted reads from standard input, since Plan 9 doesn�t provide a scanf equivalent.

Once we have a Biobuf open, we can use several functions to read and write to
them. But first, a brief note on an extension of Plan 9�s C: basic inheritance is sup­
ported. The structure Biobuf has the properties of another structured named
Biobufhdr, to the point that all Biobuf needs is to have all the elements of
Biobufhdr and the buffer itself. A pointer to a Biobuf can be used as a pointer to a
Biobufhdr. This feature will be described in full when we talk about the lock family
of routines.

The basic input functions provided by libbio are numerous and useful:

long Bread(Biobufhdr *bp, void *buf, long n);
void *Brdline(Biobufhdr *bp, int delim);
char *Brdstr(Biobufhdr *bp, int delim, int nulldelim);
int Blinelen(Biobufhdr *bp);
int Bgetc(Biobufhdr *bp);
long Bgetrune(Biobufhdr *bp);
int Bungetc(Biobufhdr *bp);
int Bungetrune(Biobufhdr *bp);
int Bgetd(Biobufhdr *bp, double *d);

Bread behaves just like read. Brdline returns either a full buffer or everything up
to the given delimiter. A more useful function is Brdstr, which returns a malloc-ed
string consisting of the next full line ending with the given delimiter, or nil on failure.
If nulldelim is nonzero, the delimiter is not included in the returned string. This
eliminates the need for idioms like

s[strlen(s) − 1] = ’\0’;

In both cases, the function Blinelen returns the length of the returned line.

Bgetc and Bgetrune read and return the next character and Rune on the file,
respectively. Both return Beof on end of file, hence the long return from Bgetrune.
They can be returned to the buffer with the equivalent unget functions. Finally,
Bgetd reads in a double, returning -1 on failure or the number of bytes read on suc­
cess.

The output routines are

long Bwrite(Biobufhdr *bp, void *buf, long n);
int Bputc(Biobufhdr *bp, int c);
int Bputrune(Biobufhdr *bp, long r);
int Bprint(Biobufhdr *bp, char *fmt, ...);
int Bvprint(Biobufhdr *bp, char *fmt, va_list v);
int Bflush(Biobufhdr *bp);

va_list, and the family of (Standard C) supporting routines, are provided; the stan­
dard routines vprint and vfprint are provided. Bflush immediately flushes the
buffer; this is usually done when the buffer gets full. Everything else works as expected.

The Bseek function works like seek, but libbio provides an alternative to

loc = Bseek(bp, 0, 1);

­ 13 ­

in Boffset, which takes the Biobufhdr * and returns the offset as a vlong:

loc = Boffset(bp);

To close an open file, use

int Bterm(Biobufhdr *bp);

Bterm will not close files opened with Binit; this allows use of the standard file
descriptors after a Bterm on them.

Let�s rewrite runecount to use libbio. Note that we no longer need readrune
given Bgetrune.

#include <u.h>
#include <libc.h>
#include <bio.h>

uvlong
runecount(Biobuf *f, char *filename)
{

uvlong n;
Rune r;

n = 0;
while((r = Bgetrune(f)) != (Rune)Beof)

n++;
print("%10ulld %s\n", n, filename);
return n;

}

void
main(int argc, char *argv[])
{

int i;
uvlong total;
Biobuf bstdin, *bfile;

total = 0;
if(argc == 1){

if(Binit(&bstdin, 0, OREAD) == Beof){
fprint(2, "can’t connect stdin to bio: %r");
exits("Binit");

}
runecount(&bstdin, "");
Bterm(&bstdin);

}else{
for(i = 1; i < argc; i++){

bfile = Bopen(argv[i], OREAD);
if(bfile == nil)

fprint(2, "can’t open %s: %r\n", argv[i]);
else{

total += runecount(bfile, argv[i]);
Bterm(bfile);

}
}
if(argc > 2)

print("%10ulld total\n", total);
}
exits(0);

}

­ 14 ­

and test it:

% 8c runecount.c
% 8l −o runecount runecount.8
% runecount /lib/glass

6715 /lib/glass
% time runecount /lib/glass

6715 /lib/glass
0.00u 0.01s 0.02r runecount /lib/glass

Now the program is significantly faster, and it still yields the proper answer.

Given Bgetrune, is there a need for runecount? To be honest, this really
depends on taste: one might argue that with libbio, we don�t need to use the unbuffered
read and we will be just fine with Bgetrune, while another might say that someone
may want to use readrune() and therefore it should be preserved. I will kill
readrune() in favor of Bgetrune. I am doing this for several reasons:

� Most programs use libbio and avoid the low-level system calls altogether.

� If a program uses the system calls, it won�t poll a byte or a Rune at a time; it will
just read an entire line or buffer.

� Most functions deal with Runes implicitly, since a set of bytes makes up a Rune,
and for those that don�t, conversion and handling routines are so straightforward
that they are used after input is read.

Feel free to disagree.

An Aside on Linking

The compilation process for runecount in the previous example was shown on
purpose: it showed that you did not need an explicit linker flag to link to libbio. Of
course, you could supply the libraries as arguments to the linker, in the form −lext,
where ext is the library name without the lib- prefix (−lbio, for example).

But the C compilers do this for you every time you include the appropriate header
file. The C preprocessor reserves a special directive

#pragma text

where the text is implementation-defined. For Plan 9�s C compiler, if text is of the form

lib "library"

then the library is automatically linked exactly once per program. For example,

% grep ’^#pragma[→]lib’ /sys/include/libc.h
#pragma lib "libc.a"

(A tab in the command line is represented by →.) The file libc.a is part of a collec­
tion of library files in /$objtype/lib. The .a means that the library was made with
the ar program; see ar(1).

7. Processes and Notes

Plan 9�s process model, to the programmer, is very similar to UNIX�s. You have
fork, exec, and wait, but they have changed quite a bit. The system call is no
longer fork but rfork, which is much richer and more powerful. And wait is now
await, which allows you to get a more precise indication of what happened and how.
fork and wait are still there, but wait is quite different. And Plan 9 has no notion
of the signal; instead, it uses notes, which are strings.

The rfork system call is simple:

­ 15 ­

int rfork(int mode);

The mode is a bitmask of the following:

RFPROC Make a new process. If not set, the mode is applied to the parent,
allowing it to do things otherwise impossible. Few programs ever need
to do so (for example, ar and rio do, for their own reasons).

RFNOWAIT The parent cannot use the await system call or any related routines
on the child.

RFNAMEG The child inherits a copy of the parent�s name space (see below). If
neither this nor RFCNAMEG, the child shares the parent�s name space.

RFCNAMEG The child has a clean name space to start.

RFNOMNT DIsallow the mount system call (described later) and access to special
device directories (#letter).

RFENVG Copy environment variables. Works the same as RFNAMEG.

RFCENVG Start with no environment variables.

RFNOTEG Child has its own note group, so notes sent to it and its children don�t
affect the parent.

RFFDG Child�s file descriptors are copied rather than shared.

RFCFDG Child has no file descriptors, not even standard ones.

RFREND Don�t allow the child to rendezvous with the parent or its parents.
The rendezvous system call is described below.

RFMEM Child and parent share data and �bss� segments � that is, global and
local variables and function call.

As you can see, rfork is a very powerful tool for controlling how a child behaves. (Par­
ents may want to pray for a real-life rfork.) But for most purposes, all you want to do
is make a child that has its own file descriptors and not be able to communicate with the
parent � RFPROC|RFFDG|RFREND � and that is what the routine fork does. Both
return:

� -1 on error

� The child�s process ID if the parent

� 0 if the child

and continue execution from where you left off. So you can say

switch(pid = rfork(RFPROC | RFFDG | RFNOTEG | RFENVG | RFNOWAIT | RFREND)){
case −1:

sysfatal("rfork failed: %r");
case 0:

child();
exits(0);

}
parent();
exits(0);

The sysfatal routine, which has the syntax

void sysfatal(char *mesg, ...);

prints the formatted message on standard error and terminates with that message as
the status return. If the global variable argv0 is set, it will be displayed before the
message. argv0 should be set to argv[0] before programs mess with it; the
command-line option macros we will see shortly do this for you.

­ 16 ­

Usually a rfork is followed by one of the exec routines, which allow a process to
be replaced by another. The system call is exec, which is similar to UNIX�s execv:

void *exec(char *filename, char *argv[]);

replaces the current process with the one at filename, passing the given vector of
arguments to the main routine�s argv. The first argument (argv[0]) is the
program�s effective name; usually the name without path. The final argument must be a
null pointer; this is used to find argc. The functions only return on failure and set the
error string; the return value is insignificant. Therefore, you can say

exec(prog, args);
sysfatal("exec of %s failed: %r", prog);

execl is a subroutine of the form

void *execl(char *filename, ...);

It turns each of its optional arguments into a member of an argv array until a null
pointer is seen, then calls exec. Beware:

execl(filename, nil);
execl(filename); /* WRONG */

What denotes an executable file? The user must have both execute and read per­
missions enabled on the file (although the manual page for exec only states that exe­
cute is required), and the file cannot be a directory. The file is opened with the mode
OEXEC, which opens to read but requires execute permissions, and the first two bytes
are scanned. If the bytes are the characters #!, then the file is assumed to be text that
is passed to another program. If the first line of file f is

#!/bin/rc

and f is called by

execl("f", "a", nil);

then the call to execl is, in effect,

execl("/bin/rc", "/bin/rc", "f", "a", nil);

Otherwise, the two bytes are put back and a long is read. If this does not equal the
a.out magic number for the current CPU architecture (see a.out(6)), an error occurs.
Otherwise, the program is executed.

The await system call, which has the form

int await(char *s, int n);

waits for a child that was not rfork-ed with the RFNOWAIT flag set to terminate.
When this happens, the first n characters of a special string are stored in s and the
function returns the length of the special string that was stored (in case n was too big),
or -1 if there are no children to wait for. The special string is of the form

process−ID user−time system−time real−time ’status−return’

with spaces separating each field. The status return is blank for successful termination;
the appearance is ’’. The times are reported in milliseconds. There is no ’\0’ at the
end of this string, so be sure to add one in your code:

­ 17 ­

char buf[256];
int n;

if((n = await(buf, 255)) >= 0)
buf[n + 1] = ’\0’;

The tokenize routine can be used to separate the individual fields:

int tokenize(char *str, char **array, int max);

str is the string to tokenize, wich is split into at most max elements of the array by
overwriting certain delimiters with ’\0’. The function returns the number of tokens
actually split. The splitting rules are simple: split at whitespace, except treat quoted
text as a single token. The quoting rules are the same as in rc:

’hello’ becomes hello
’stay here’ becomes stay here
’the bee’’s hive’ becomes the bee’s hive
’’ becomes a null string
’’’’ becomes ’

So the code to split into the individual fields is simple:

char *fields[5], buf[256];
int n;

if((n = await(buf, 255)) < 0)
sysfatal("await failed: %r");

buf[n + 1] = ’\0’;
if(buf[n] != ’\’’)

sysfatal("buffer was too small to hold await’s message");
tokenize(buf, fields, 5);
print("pid %s took %s milliseconds and returned %s\n", fields[0], fields[3],

*fields[4] == ’\0’ ? "success" : fields[4]);

This is what the wait subroutine does.

Waitmsg *wait(void);

which waits for a process and returns a malloc-ed structure of type Waitmsg:

typedef struct Waitmsg Waitmsg;
struct Waitmsg{

int pid;
ulong time[3];
char *msg;

};

where the fields are given in the same order that await does, so time[1] is system
time. msg is allocated with malloc, but you can�t use free since the malloc that
was used is not what you think. You only have to free the Waitmsg, and everything
else is fine. If you want to know the magic, see /sys/src/libc/9sys/wait.c. if
you want an example of wait and Waitmsg, see the source for the time command at
/sys/src/cmd/time.c.

What happens if the command is interrupted (you hit the interrupt key)? An inter­
rupt usually kills the process by sending what�s called a note to the process and all its
children in the same note group. Forking the child to have the RFNOTEG flag set allows
the child to handle its own notes independently from the parent. If time did this, how­
ever, it would be unable to report that the command had been interrupted.

­ 18 ­

There are many different types of notes. The most common are interrupt, hangup,
which is sent when you disconnect from a CPU server, alarm, which is associated with
the alarm system call, and bad address, which happens when you access invalid mem­
ory. If any of these notes are not handled, the program terminates.

How can you handle notes? rc allows you to define functions like sigint that get
executed when the specific note gets processed. What really happens is rc registers its
note handler to execute the function and return when the specific note is issued. The
system calls notify and noted do this.

Unlike with UNIX signals, there is only one note handler function, which is regis­
tered with the notify system call:

int notify(void (*f)(void *, char *));

The argument is a pointer to a function f defined as

void f(void *ureg, char *note)

The ureg argument is turned into a pointer to a structure of type Ureg, defined in
/$objtype/include/ureg.h. Ureg contains the values of machine registers at
the time the note was posted, and as such, is nonportable. Few, if any, programs ever
need to use this structure and/or this argument to the handler. The second argument is
the note string itself. If the function passed to notify is a null pointer, the default
handler is restored. The return value is insignificant.

Note handlers follow special rules. They may not use floating-point operations,
nor may they call functions that do. A note handler cannot return; it must either exit,
use the noted system call, or call the notejmp routine. noted is of the form

int noted(int how);

how is NDFLT if you want the system to do the default action or NCONT if you want the
system to go back to where the program left off. The return value is insignificant, as
the note handler doesn�t return. Also, jmp_buf, setjmp, and longjmp are pro­
vided, but you cannot longjmp from within a note handler. Instead, you use the safer
notejmp routine, which works the same as longjmp.

If a note interrupts a system call and the note handler calls noted(NCONT), the
system call terminates early with error string interrupted. This is very important,
as it can be a cause of errors. Beware.

To send a process a note, use the postnote subroutine:

int postnote(int who, int pid, char *note);

If who is PNPROC, only the process is killed. But if it is PNGROUP, all the processes in
the process group is killed, with the exception of the current process if it is in that
group. This is a restriction of the operating system, not of postnote itself. On fail­
ure, postnote returns -1. A useful but undocumented note to post is kill, which
terminates the process without giving it a fighting chance. This is actually what the
kill command does:

term% kill rc
echo kill>/proc/2379/note # rc
echo kill>/proc/4431/note # rc
echo kill>/proc/5453/note # rc
echo kill>/proc/6233/note # rc
echo kill>/proc/6243/note # rc
echo kill>/proc/6445/note # rc
echo kill>/proc/6684/note # rc
echo kill>/proc/7005/note # rc

Piping that to rc will kill every rc, including the one you created in the pipe.

­ 19 ­

The alarm note involves an alarm clock that each process has (and only one per
process). The alarm system call is of the form

long alarm(ulong ms);

ulong is a synonym for unsigned long. If its argument is 0, the alarm clock is
cleared. Otherwise, the alarm clock is set to send the note alarm after the given num­
ber of milliseconds. The return value is the number of milliseconds left in the previous
alarm clock. alarm can be used to write a command timeout which stops a process
from running after a given amount of time.

#include <u.h>
#include <libc.h>

int pid;
char *prog;

void
notehandler(void *, char *note)
{

if(strcmp(note, "alarm") == 0)
if(postnote(PNGROUP, pid, "kill") < 0)

sysfatal("could not time out %s: %r\n", prog);
else{

fprint(2, "timeout\n");
exits("timeout");

}
else

noted(NDFLT);
}

int
endswith(char *full, char *what)
{

int i;
char *wp = what + strlen(what) − 1;

for(i = strlen(full) − 1; wp >= what; i−−, wp−−)
if(full[i] != *wp)

return 0;
return 1;

}

void
main(int argc, char *argv[])
{

long ms;
Waitmsg *w;

if(argc <= 2){
fprint(2, "usage: %s seconds command−line\n", argv[0]);
exits("usage");

}
ms = strtoul(argv[1], nil, 10) * 1000; /* sec −> ms */
prog = smprint("/bin/%s", argv[2]);
switch(pid = rfork(RFPROC | RFFDG | RFENVG | RFREND | RFMEM | RFNOTEG)){
case −1:

sysfatal("fork failed: %r");
case 0:

exec(prog, &argv[2]);

­ 20 ­

prog = smprint("./%s", argv[2]);
exec(prog, &argv[2]);
sysfatal("exec failed: %r");

}
notify(notehandler);
alarm(ms);
w = wait();
if(w−>msg[0] != ’\0’){

fprint(2, "%s failed with %s\n", prog, w−>msg);
free(prog);
exits("failed run");

}
free(prog);
exits(0);

}

We have to provide endswith since the C library doesn�t provide the similar strrstr
(it does provide strstr and other functions). smprint creates, using malloc, a
string which contains the fully formatted text. Use this instead of a custom buffer and
sprint, as it avoids the risk of truncating or overflow due to an improperly sized
buffer. The RFMEM flag is set so the process can change prog at will. We kill with
PNGROUP in case the program that you run forks its own processes.

This example shows another feature of the Plan 9 C compilers: an unnamed argu­
ment signals that it is not used.

