
Experiments Towards Model-Based Testing Using Plan 9:
Labelled Transition File Systems, Stacking File Systems,

On-the-fly Coverage Measuring

(work in progress)

Axel Belinfante
University of Twente

Axel.Belinfante@cs.utwente.nl

ABSTRACT

We report on experiments that we did on Plan 9/Inferno to gain more experience with
the file-system-as-tool-interface approach. We reimplemented functionality that we earlier
worked on in Unix, trying to use Plan 9 file system interfaces. The application domain for
those experiments was model-based testing.
The idea we wanted to experiment with consists of building small, reusable pieces of
functionality which are then composed to achieve the intended functionality. In particular
we want to experiment with the idea of ’stacking’ file servers (fs) on top of each other,
where the upper fs acts as a ’filter’ on the data and structure provided by the lower fs.
For this experiment we designed a file system interface (ltsfs) that gives fine-grained
access to a labelled transition system, and made two implementations of it. We developed
a small fs that, when ’stacked’ on top of the ltsfs, extends it with additional files, and an
application that uses the resulting file system.
The hope was that an interface like the one offered by ltsfs could be used as a general
interface between (specification language specific) programs that give access to state
spaces and (specification language independent) programs that use (walk) those state
spaces like simulators, model checkers, or test derivation programs.
Initial results (obtained on a less-than-modern machine) suggest that, although the ap-
proach by itself is definitely feasible in principle, in practice the fine-grained access offered
by ltsfs may involve many file (9p) transactions which may seriously affect performance. In
Unix we used a more conservative approach where the access was less fine-grained which
likely explains why there we did not suffer from this problem.
In addition we report on experiments to use acid to obtain coverage information that
is updated on-the-fly while the program is running This worked quite well. The main
observation from those experiments is that the basic block notion of this approach, which
has a more ’semantical’ nature, differs from the more ’syntactical’ nature of the basic
block notion in Unix coverage measurement tools like tcov or gcov.

1. Introduction and Motivation

In the world of formal methods and tools one tries to study and analyse systems using models
of these systems. For example, by simulating the models to study the behaviour of a system.
By looking for the presence of wanted properties or checking for the absence of unwanted
ones (model checking). By deriving test cases that allow checking (testing) whether the
implementation of a system conforms to its model (specification). This last activity, testing,
is the focus of our attention [3, 11].

Those models, or specifications, are written in various modeling or specification languages1

Examples are LOTOS [8], Promela [7] or SDL [5].

Even though these languages differ from each other, their meaning (semantics) is commonly
expressed using labelled transisition systems (LTSs). The fact that those kind of languages
share this common formalism to represent their behaviour is something that can be exploited

1We will from now on use the word specification language, for simplicty.



when building software tools for them, like the simulators, model checkers etc. The idea is
to isolate specification language specific details in specification language specific tools, and
implement generic, specification language independent algorithms only once in other tools.
Instead of building a simulator for each specification language one can instead build a single
simulator that can simulate a labelled transition system, together with translaters that provide
labelled transition based access to the specification languages one is interested in.

The CADP toolkit [1] uses this approach. It defines a C interface (API) that is used be-
tween providers of labelled transition systems and their users. This interface is called the
Open/Caesar interface [6]. CADP comes with a number of (specification language specific)
tool components that provide this interface for several specification languages (among which
is LOTOS), and with generic tools like a simulator, a state space generator, etc. that use the
Open/Caesar interface. A user can extend the toolkit both by providing the Open/Caesar inter-
face for additional specification formalisms, and by using the interface to implement additional
(specification language independent) tools.

In Unix we have used this same approach of separating specification language specific func-
tionality from generic specification language independent functionality in our prototype toolset
for model-based testing [11]. In that toolset we did not restrict ourselves to a single interface
between specification language specific LTS generating functionality and our specification lan-
guage independent test derivation implementation. We used the Open/Caesar API to connect
to CADP, to be able to access specifications in LOTOS. For a few other specification languages
we made our own tools to provide the labelled transition system. These tools do not provide
the Open/Caesar C API. Instead, they are self-contained programs that read a specification
from file after which a simple textual ’protocol’ on their standard input and output can be
used to access the labelled transition system. The (specification language independent) test
derivation tool would then simply fork off a labelled transition system provider and engage in
the textual protocol to access the LTS.

This approach worked well.

The aim of our work in Plan 9 (and Inferno) is to experiment with this same approach of
separating specification language specific functionality from generic specification language in-
dependent functionality, but not via a C API or a textual protocol over a pipe but via a file
system interface.

We see various advantages of this approach.

One specific advantage is that we hope it to be more extensible: the C interface only has opaque
concepts ’state’ and ’label’, and it is not possible to ’refine’ that. Also in the textual protocol
we describe each transition with a fixed set of properties. In the file system approach we hope
to be able to have an extendable interface, in which we can add more detail corresponding to a
particular ’view’ on the LTS, by ’stacking’ file systems on top of each other where the ’higher’
file systems extend the lower one with additional files. The user just sees the end result, and
need not be aware of the stacking. In Section 4. we give an example of this approach.

The other advantages are not specific to our application area, but are the general advantages
of using a filesystem as interface. We are no longer programming language dependent. In
particular, being able to access the interface from the shell using echo and cat makes it easier
to just ’play’ with an lts. In addition, it makes it easy to gradually built more complex tools,
by first prototyping functionality from the shell, and then when needed reimplement it, for
example in C. We can easily run different pieces of funtionality on different machines.

We also see potential disadvantages to this approach. We will never be as fast as when using a
C API. Because we want to offer fine-grained access, we intend to split the information of many
different files (not unlike upas/fs does) but a consequence is that to access this information
the user will have to walk, open, read, close many different files, many of which will only be
visited once.

2. Preliminaries

2.1. Labelled Transition Systems

A labelled transition system consists of states and transitions. It can easily be depicted in a
graph where the nodes are states and the edges between nodes are transitions. The transitions
have labels attached to them (hence the name: labelled transition systems). Formally they



consist of a 4-tuple 〈S, L, s0, R〉 with S a set of states, L a set of labels, s0 the initial state
and R ⊂ S × L × S the transition relation.

The following coffee machine is simple example. It allows the user to enter a coin into the
machine, after which the user should press a button to get coffee. If the user waits too long,
the machine performs an internal (unobservable, invisible) transition (timeout) and refunds
the coin. Usualy we use the special label τ (tau) to denote internal (invisible) transitions.

S0

S1

coin

S2

but

S3

timeout

coffee refund

Figure 1: The labelled transition system of a simple coffee machine.

So, in this example S = {S0, S1, S2, S3}, s0 = S0, L = {coin, but, timeout, refund} and
R = {(S0, coin, S1), (S1, but, S2), (S2, coffee, S0), (S1, timeout, S3), (S3, refund, S0)}.
2.2. Implicit and Explicit Transition Relation

In the example above we explictly gave the labelled transition system, including the transition
relation. Many specification languages do not describe the transition relation so explicitly
(some do). In many cases we can only gradually unfold the transition system by following the
outgoing transitions of those states that we already have seen (initially the start state).

This is reflected in the interfaces. The Open/Caesar interface has functions to access the start
state, and to iterate over the outgoing transitions of state.

In our interface we will have something similar.

3. The Labelled Transition File System Interface

3.1. Requirements

We recapitulate the requirements on the interface (some we did not mention before). The
interface must give the user a the start state. It must allow the user to gradually unfold the
labelled transition system. It must allow the user to access the labels of the transition. It must
be able to tell the user whether a transition is visible or invisible (internal to the system, like
the timeout in Figure 1) (this is new). The user should be able to tell it that certain states
or transitions are no longer of interest (which should allow freeing resources associated with
those) (this is new).

One requirement is related to performance. Since we use this only as an interface on top
of the real state and transition representation, its resource usage must be within reason. In
particular, the memory overhead should be small.

3.2. Design Considerations

As should be obvious, we have chosen to design the interface as a file system.

We might have chosen to use a directory structure that resembles the tree that we get when
we unfold a labelled transition system from the root, but we have not. We did not do that for
two reasons. Firstly, that would mean that we can not remove internal nodes from the tree,
because without them we can not reach their subtrees or leaves. Secondly, it would be difficult
to represent those transitions that close a cycle, like the transitions coffee and refund in
Figure 1.



3.3. Directory Structure

We have chosen to use directory structure a bit like the numbered connection directories
present in the protocol directories of ip(3).

At the toplevel we have files ctl and stats, and for each transition a numbered directory.

For specification languages for which the transition relation is implicit we will initially have
only one such numbered directory: for the initial transition. While we explore the LTS we
create more of those directories. If, however, a specification language has an explicit transition
relation we may choose to immediately create numbered directories for all transitions.

A numbered directory represents not only a transition but also the state that we reach by that
transition. It contains files that allow the user to access properties of the transition (label,
visible) and files that allow access to the outgoing transitions of the state (succ and heir,
and indirectly bro).

S0

(0)

S1

(1) coin

S2

(2) but

S3

(4) timeout

(3) coffee (5) refund

Figure 2: LTS of a simple coffee machine with transition numbers.

Files nr/label and nr/visible return, when read, respectively a string representation of the
label and of the visibility (0 or 1) of transition nr.

File nr/succ lists, when read, the outgoing transitions of the state reached by transition nr
(in a space-separated list).

Files heir and bro give an alternative way of unfolding the transition system. File nr/heir
gives the firstborn son of the state reached by transition nr i.e. the first element of the result
of nr/succ (empty when nr has no children). File nr/bro gives the brother of transition nr
i.e. a next element of the list returned by succ (empty when we exhausted the list).

We use the numbering of Figure 2 to illustrate succ, heir, and bro. File 1/succ gives ”2
4”. File 1/heir gives ”2”. File 2/bro gives ”4”. File 4/bro gives ”” (the empty string).

Where succ is mostly useful for breadth-first exploration of the labelled transition system,
heir and bro are slightly more general and do not impose a particular exploration strategy.

3.4. Initial Transition

A ’special’ case is the initial transition: the transition at the top of Figure 1, without ’source’
and without label, that points to the initial state (S0).

The toplevel ctl file, when read, returns the number of the initial transition.

3.5. Multiple Incoming Transitions

Above we wrote that we have chosen not to use a directory structure that resembles the LTS
(tree) unfolding structure because it would be difficult to represent cycles, but we did not tell
how we do represent cycles. We will tell now.

Actually, we have to deal with a slightly more general case than only with cycles. We have
to deal with states that have multiple incoming transitions, which may also be present in a



non-circulair LTS, as illustrated by state S2 in Figure 3.

S0

(0)

S1

(1)

S3

(3)

S2

(2) (4)

Figure 3: LTS with state with multiple incoming edges (labels omitted).

The solution we take is to treat the first transition that reaches a state as the canonical
transition that points to that state (and use the number of that transition as the canonical
number of the state). The user can access this information via one additional file in each
numbered directory: elsewhere.

When read, file nr/elsewhere returns the number of the first transition other than nr that
reached the state that is reached by nr (rephrased: the number of the canonical transition
that reached it).

So, for the example of Figure 3 all nr/elsewhere files return ”” (the empty string), except
for 4/elsewhere which returns ”2”.

For the example of Figure 2 both file 3/elsewhere and file 5/elsewhere give ”0”. Files
0/succ, 3/succ and 5/succ all return ”1”. However, files 0/label, 3/label and 5/label
return respectively ”” (the empty string), ”coffee” and ”refund”.

Our choice has one clear disadvantage, which becomes apparent when the user is allowed
to remove states and transitions from an LTS: in that case the user may choose to loose the
canonical reference (transition) to a state (which would make it definitely much less canonical).

3.6. Removal of States and Transitions

One of the requirements we gave above was the ability for the user to indicate that certain
states or transitions would no longer be referenced, which should allow a labelled transition
filesystem to free resources associated with those states or transitions.

A natural way to indicate loss of interest in states or transitions is the removal of the numbered
directory that gives access to it.

3.7. Implementations

We have two implementations of this interface for Plan9 in C.

The first implementation gives access to a LOTOS specification, using the Open/Caesar in-
terface. We have linked it together with specification-specific C code that was generated from
a LOTOS specification by CADP (this C code needed minor tweaking to be accepted by the
Plan 9 C compiler).

For the implementation we used lib9p. Initially we used the file trees of lib9p, but this used
too much memory (for some 4200 transitions it would take approx. 9 Mb). Nevertheless, the
use of file trees made it easy to quickstart an initial implementation. We reimplemented it
without file trees, which made more adequate use of resources (a little less than 2 Mb for
those 4200 transitions. This can be reduced further by sharing the label strings (right now we
allocate a new string for each transition label) and using our own pool allocator for the state
and transition data structures to avoid malloc overhead).



The second implementation gives access to specifications in the Aldebaran language of CADP.
This is a textual format that closely resembles the structure of an LTS. It was rather easy to
derive the implementation for Aldebaran from the one without file trees for LOTOS.

We implemented removal of states and transitions only in our initial file trees based implemen-
tation for LOTOS. We did not implement this (yet) in our reimplementation of the LOTOS
ltsfs without file trees, nor in the implementation for the Aldebaran language.

Earlier we had already made an alternative implementation for Aldebaran in limbo.

4. Extending The Labelled Transition Interface

4.1. Introduction

So far we have discussed the labelled transition file system interface. It is based on the formal
LTS definition we presented above, where we have a single set L containing all the labels.

In the testing theory that we use ([10]) we do not use a single set of labels, but we split the
labels in two groups: the input labels (LI) and the output labels (LU ) (internal action τ is
special and does belong to neither input nor output, formally L = LI ∪LU ∪ {τ}). The input
labels represent stimuli that the tester can send to the system under test. The output labels
represent observations that the tester can get from the system under test.

This means that there is a small gap between the information provided by the labelled transition
file interface, and the information needed for our test derivation tool component. We can fill
this gap in various ways.

One solution is to provide the test derivation tool component with a parameter: a map (or
mapping function) that, when given a label, tells whether it is an input or an output label.
This is the approach that we took in our Unix toolset.

Another solution is to extend the file system interface, such that the test derivation tool
component can read an additional file in each numbered (state/transition) directory to see
whether the label belongs to input or output.

We want to use this second approach. We want the file system interface to provide a separate
file named iokind in the numbered state/transition directories. File iokind contains either
the string input, the string output, or the empty string, for respectively input labels, output
labels, and internal actions.

However, we do not want to change the labelled transition file server we already made – it does
not care about input or output labels, and we don’t want to ’pollute’ it with this distinction.
(Actually, there are specification languages that already make the distinction between input
and output on their language level. A labelled transition file server for such a language could
(should) of course directly offer iokind files.)

client

iofs

ltsfs

9p

9p

Figure 4: Stacking iofs on top of ltsfs.

What we want to develop is a file server (lets call it iofs) that sits between the user and the
real labelled transition file server and extends the file system offered by the labelled transition
file server with those iokind files. The intermediate file server (iofs) should work as a filter
on the 9p ’message stream’ between client and server, as illustrated by Figure 4. It should
keep as little state as possible. It should not keep a local copy (modified by local changes like



inserting iokind files) of the file tree (with or without the actual files) in server. With the
very many small files that we have to deal with for the labelled transition filesystem keeping a
local copy of the file tree would be too expensive (memory wise).

This approach is very similar to the approach taken by trfs [2] and substfs [4]. Also trfs and
substfs sit between a user and a real file server and extend (change) the view of the user on
the real file server. The main difference is that trfs and substfs change file names but do not
change the number of files that the user sees, i.e. with trfs and substfs there is a one to one
mapping between files that the user sees and files on the real file server. With iofs this is
different: the iokind files do not exist on the real file server, but have to be ’invented’ by iofs.

This approach differs from the approach taken by libolfs [9], because libolfs seems to keep its
own copy of the structure of the file tree on the server (which we don’t want to do). Another
difference is that libolfs access the (files on the) server via normal operations (read, write,
open, close) on the mounted file system instead of talking 9p directly.

4.2. Requirements

File server iofs gets on its command line a (connection to the) file server it has to extend and
regular expressions that tell it whether a particular label string belongs to ’input’ or to ’output’.

In general, it should forward its requests to the underlying file server, and forward the results
of the underlying file server to the client. Some preprocessing and some postprocessing may
be necessary.

When the client reads a numbered directory iofs should get the directory entries from the
server and add a directory entry for the iokind file.

When the client stats a nr/iokind file iofs should return the same directory entry that it
would return for iokind in a directory read of nr.

When the client reads a nr/iokind file iofs should read the label from the nr/label file
of the underlying file server, apply the regular expressions to compute the correct result and
return it to the client.

The iofs file server should present the client a consistent set of qids. The iokind files should
all have distinct qids, that are different from the qids of the other files.

4.3. QID Structure

Compared to trfs and substfs, the difficulty here is to provide the client with a consisten qid
space, even when we add files. We need a way to ’invent’ new qids for the files that we will
add, such that we do not cause conflicts with the files already there.

The solution we took is the following. We assume that the highest bits of the path field of
the qids of the underlying server contain zeros, so it is safe to bit-shift these a few positions
’upwards’, to ’create’ some free bits for ourselves to play with. (we can instrument our code
with assert statements to check/enforce this assumption). How many bits should we shift?
In our case, one could say that for every nr/label file we want to add a nr/iokind file,
so shifting one bit would be sufficient. Assuming function qid gives us the qid of a file,
then (qid(nr/label).path << 1) could be used to refer to the original nr/label file, and
(qid(nr/label).path << 1)|1 can then be used to refer to the new nr/iokind file.

An important advantage of this approach is that the resulting qid space should allows further
stacking, using the same approach, because we only add bits to the low end, where we already
assumed the bits to be.

How do we make sure that we have the qid of the nr/label file of the underlying server when
we need it? We need it in two cases.

Firstly, when we read (the directory entries of) a numbered directory. In that case we make
sure that we know that we are reading a numbered directory (i.e. we are aware that we walked
to it, see below for details). We forward the read requests to the underlying fileserver, and as
usual, after postprocessing the replies, forward these to the client. In this case postprocessing
involves two additional activities. It involves recognizing the directory entry for the label
file and remembering its qid. It involves also the following. When the underlying file server
indicates that all directory entries have been read (by returning a 0 read result) iofs synthesizes
a directory entry for the iokind file and returns it. This will cause the client to issue one



more read request, at which point iofs does return a 0 read result. The directory entry for the
iokind file is synthesized using the qid of the label file that was remembered earlier.

Secondly, when the client issues a walk request on a nr/iokind file. In that case iofs prepro-
cesses the request into a walk to nr/label before forwarding it to the underlying file server
(and remembers that the original request involved nr/iokind). The underlying server returns
its qid of nr/label in the walk reply, and iofs can associate it with the client fid, to use it to
generate the correct qid for a subsequent stat or open request.

4.4. Implementation

We implemented this using lib9p. We mainly use its fid support. For each fid we keep the
following information in an Aux struct:

• a string path (together with its size)
• a boolean flag isnrdir
• a boolean flag isiokind
• a boolean flag iokindadded
• a Qid ioqid

We use these fields as follows.

String path represents the current path for this fid in the underlying filesystem. We update
it during after each succesful walk in the underlying file system and canonicalize it using
cleanname(2).

Flags isnrdir and isiokind are updated when we process the walk message that we get from
the client, by trying to match two regular expressions on a copy of the path, updated with
the path elements in the walk message and canonicalized using cleanname(2). These flags are
used when handling subsequent requests on the fid, like open, read, and stat.

Flag iokindadded and Qid ioqid are used when we process read requests on a numbered
directory. Qid ioqid is used to store the qid of the nr/label file of the underlying server, which
we extract from the directory entries returned in the read replies of the underlying server. We
use ioqid when we generate the directory entry for the iokind file. Flag iokindadded is used
to remember whether or not we already returned such iokind directory entry to the client.

We structured the main service loop of the implementation like the one of trfs [2]. Essentially
it consists of the following steps:

1. get a client 9p request
2. do some work based on the request message type

(allocate or lookup a fid, update its data, tweak the 9p request)

3. send the (possibly tweaked) 9p request to the server
4. get the 9p reply from the server
5. do some work based on the reply message type

(update fid data, tweak the 9p reply (rewrite its qids, tweak data))

6. send the (tweaked) 9p reply to the client

We keep the 9p request that we get from the client and (after possible tweaking) forwarded to
the underlying server until we have processed the 9p reply from the underlying server, because
we may need both request and reply when processing the reply (at least for the walk message,
where we need the names of the ’items’ walked).

In our case each message that we get from the client results in a message that we send to the
underlying server, even in the case of a read of a nr/iokind file because then we read the
corresponding label file from the underlying server. In general that need not be the case. It
is very well possible that a client request can be answered without contacting the underlying
server (in our case the last read of a numbered directory need not go via the underlying server).
It is just as well possible that to handle a client request our server needs to interchange multiple
messages with the underlying server.

This makes it not so easy to see exactly what library support could be offered to ease con-
struction of these kind of file servers, since the obvious candidate library function (the service
loop function) may need to be customized for the particular application.



For our special case where each client request results in a corresponding request to the under-
lying server this would be easier. The library could offer a service function that is structured
like ours and that uses two sets of user-supplied processing functions: one set to process client
requests, and one to process underlying server replies.

5. A Client for Test Derivation Primitives

Now that we have access to the labelled transition system and know whether the label of a
transition represents input or output we can use this to compute what we need for testing.
This is the tool component that we usually call the primer.

For each stage during the testing we need to compute the set of input labels that represents
stimuli that the tester can send to the system under test, and the set of output labels that
represent the observations that we expect. We call these sets the input menu respectively
output menu. With each label in a menu we associate the set of states that we can reach from
the states of the stage by following transitions with that label.

Each testing stage corresponds with one or more states of the labelled transition system (if
there is more than one this is due to non-determinism).

To compute the menu for a stage we obtain the outgoing transitions of each state in the stage,
either using the succ file for the state, or using the heir and bro files. For each of these
transitions we read the elsewhere file to check whether there is a canonical number for the
state reached by the transition, and the visible file. If a transition is not visible (internal)
we also have to take into account the outgoing transitions of the state reached by the internal
transition. If a transition is visible we read the label and iokind files to compute the menus.

We go from one testing stage to the next by giving a stimulus or doing an observation. The
label corresponding to the stimulus or observation must be in the input resp. output menu of
the stage. The states for the next stage are those that were associated with the stimulus resp.
observation label. If these states correspond to an earlier stage our next stage will actually be
that earlier one (we have detected a cycle).

If we do not take for the next stage all states associated with the stimulus resp. observation la-
bel, but only one of those states (randomly chosen), we get a simulator program that simulates
the specification. We can test a simulated specification just like a real implementation.

The primer is a separate program that takes as argument the directory on which the iofs is
mounted. It offers its functionality also via a (small) file system.

Files inputs and outputs present, when read, the corresponding menus. Files input and
output present, when read, a randomly chosen element from the corresponding menu. To files
input and output a label string can be written. If the label is valid (in its menu) the write will
succeed and a transition to the next stage is done and new menus are computed. Otherwise
the write fails and no transition is done. File states, when read, present the stages and their
corresponding states. File state, when read, presents this information for the current stage.
To switch to one of these stages without doing a transition the stage number can be written
to file state.

5.1. Implementation

Also this file server was implemented using lib9p. The implementation is rather straightforward.

6. Completing the Tester

The work we described so far provides the basics for model based testing. We need two more
components to complete the test tool: the (generic) driver which implements the ’main loop’
of the tester, and the (implementation under test (IUT) dependent) adapter which provides
the driver with a uniform interface to the IUT. The function of the adapter is twofold: to
provide the actual connection to the IUT using those interfaces that the IUT offers, and to
translate between the abstract labels with which we represent stimuli and observations in the
specification and the concrete messages used on the actual interfaces of the IUT. Figure 5
depicts the components of the complete test tool.

The adapter provides a file system as interface to the driver. This interface consists of two
files: write-only input and read-only output. When a stimulus (as obtained from the primer)
is written to input the adapter will issue the corresponding stimulus to the IUT. When output
is read the adapter returns an observation in abstract form that can be checked by the primer.



ltsfs, iofs primer driver adapter IUT

Figure 5: Complete tester with implementation under test.

An adapter that is simple to implement is one that provides the adapter interface to the
simulation variant of the primer (giving access to a simulated implementation under test).

We implemented a simple driver and a simulation adapter to be able to do at least some
testing. The driver ’forever’ performs test steps until an error is found or the user stops the
testing. For each test step either a stimulus is given or an observation is checked. The choice
between stimulating and observing is made at random. When stimulating the driver obtains
a (randomly chosen) stimulus from the primer, passes it on to the adapter and passes it back
to the primer to make it proceed to the next testing stage. When observing an observation
is obtained from the adapter and passed to the primer for checking – if the observation is
expected the primer proceeds to the next testing stage.

7. Experimental Results

We experimented in two ways. Initially we did not yet have the driver program, and thus only
experimented with the combination of ltsfs, iofs and primer. Once the driver and simulation
adapter were ready we compared several ’toy’ spefications (in Aldebaran) of simple coffee
machines.

7.1. Without Driver and Adapter

We have used the ’stack’ of file servers (ltsfs, iofs and primer) to just by hand (using cat and
echo) look at the input and output menus and make transitions.

Functionality-wise all worked fine.

Regarding performance we were less succesful than we hoped for (we did perform the experi-
ments on a relatively old 333 Mhz AMD K6-2 based machine with 256 Mb, and realized too
late that it could have been nice to do the same experiments on a more modern machine).

All was well with the Aldebaran examples, which were rather small toy examples.

With the LOTOS example computation of the menus took noticible more time, already when
the number of states corresponding to a testing stage was small. However, in the LOTOS
example the number of outgoing transitions for each state was much larger (approx. 60) than
in the Aldebaran examples (at most 5). When, due to internal transitions, the number of states
of a stage grew, already quickly the menu computation took longer than we found acceptable.

The reason seems to be the large number of files that is accessed in the labelled transition file
system during menu computation. This suggests that we used a too fine-grained access, and
might have been better off by letting the succ file not only give transition numbers, but also
directly the properties label, visible and elsewhere. This would be a direct translation of the
textual interface that we use in Unix.

Generally speaking this means that instead of using a separate file for each state or transition
property, we then use for each state a single file that holds the transition properties of all its
outgoing transitions and the state properties of their destination states (except the outgoing
transitions of these destination states). However, adding properties (e.g. the ’iokind’ informa-
tion) in a compositional way might be more involved than with the fine-grained access that
we experimented with.

Time limitations unabled us to further explore this, at the time of this writing.

7.2. With Complete Tester

We have used the complete tester to compare several toy specifications of simple coffee ma-
chines in Aldebaran. The tester was able to detect unexpected outputs (observations) from
the (simulated) implementation under test.



8. Measuring Implementation Coverage on-the-fly

We have experimented with on-the-fly coverage data generation using acid, based on the acid
coverage library. Like acid libraries truss and trump it outputs diagnostic information, in this
case about basic blocks reached, while the program is running. This worked quite well.

In our current version of this, the diagnostic is only printed when a block is ’hit’ that was
not covered before. This allows on-the-fly updating of a plot that shows the percentage of
basic blocks covered. An alternative would be to print a ’basic block identifier string’ (e.g. the
’address’ of the corresponding source code) each time the block is ’hit’. In Unix we tried this
(not using acid) and it allowed producing even more insightful plots. We will have to do the
experiment to see how it will affect the speed of the running program.

The main observation from our experiments is that the basic block notion of this approach,
which has a more ’semantical’ nature, differs from the more ’syntactical’ nature of the basic
block notion in Unix coverage measurement tools like tcov or gcov. In particular, with the
acid-based approach the start and end of a function do not automatically imply the start and
end of a basic block.

8.1. Implementation

We implemented this by modifying a copy of the acid coverage library.

As distributed acid does contain a ’print’ builtin command, but no ’flush’ builtin. We added
one to be able to force timely diagnostic output. Much later we found, thanks to acid libraries
trump and truss, that we can ’misuse’ the acid builtin ’stop’ to force a flush.

Apart from the changes implied by the description above, we also experimented with reducing
the list of all basic blocks found by the acid coverage library to only those that correspond to
source files of interest. Otherwise we will also get diagnostics about the basic blocks in all
library code that is part of a program. The approach we tried was to only take those blocks
of which the source address of the start of the block corresponded to a source file of interest.

9. Conclusions

We designed a file system interface, that offers fine-grained access to a labelled transition
system and made two different implementations of it.

We designed and implemented a file server that extends the labelled transition file system with
new files. This extending file server does have knowledge of the file system hierarchy of the
labelled transition file system. The scheme that we used to assign Qids for the extending file
server allows further ’stacking’ in the same way, because it only uses ’low’ (little end) bits of
the Qids. So, the assumption that the all the information is in the ’low Qid bits’, and that the
’high Qid bits’ are zero remains valid.

We implemented a client (the primer) for the extended labelled transition system file system. It
derives test primitives and can also be used as simulator. This client allowed us to evaluate this
approach of dividing the functionality over various programs that interface via file systemes.

In principle, the labelled transition system approach works well and offers access at the right
level of abstraction. The fine-grained access obviates the need for parsing data read from the
server in the client.

For practical purposes the access may be too fine-grained. (Or our machine for doing the
experiments may be too old and too slow.) The fine-grained nature scatters the information
over many files of the server. The large number of file operations that the client needs to
access the information seem to have a negative impact on performance. A slightly less fine-
grained alternative, with which we have good experiences in Unix, is suggested to alleviate the
problem.

We implemented the remaining components (driver, adapter) that we need to do (simple)
model-based testing. The resulting tester allowed us to compare several (very simple) speci-
fications with each other using testing: it did detect those (simulated) implementations that
did not conform to the specification.

Regarding the printing of coverage information acid proved to be a very flexible tool.



10. Future Work

It may be worthwhile to add the more coarse-grained labelled transitions interface to imple-
mentations we described here, to be able to make the comparsion.

Since we already have the implementation to test, and the ltfs for the LOTOS specification, it
would be interesting to implement an adapter for that implementation, which would allows us
to repeat the LOTOS part of the experiment described in [3]. An interesting question will be
whether the uniform Plan 9 interface to resources, and interfaces like dial(2) and announce(2),
may ease the construction of such adapter.

Extension of the interfaces may be necessary. If the adapter has to return information to the
driver about the application of a stimulus a natural extension could be to make its file input
also readable, let the driver open it in read-write mode, write the stimulus to it, and read
back the information. For animation purposes it may be helpful if we can associate identifiers
of visual objects (nodes, edges) with states and transitions of the ltsfs, and these identifiers
are somehow also made available through the primer to the driver. This would allow us to
animate a visualization of the specification (as for example Figure 1 or Figure 2) by highlighting
(changing the color of) nodes and edges as testing proceeds.

References

[1] A toolbox for ”construction and analysis of distributed processes”.
http://www.inrialpes.fr/vasy/cadp/.

[2] F. J. Ballesteros. trfs.c. /n/sourcesdump/2006/0523/contrib/nemo/sys/src/cmd/trfs.c.

[3] A. Belinfante, J. Feenstra, R.G. de Vries, J. Tretmans, N. Goga, L. Feijs, S. Mauw, and
L. Heerink. Formal test automation: A simple experiment. In G. Csopaki, S. Dibuz,
and K. Tarnay, editors, 12th Int. Workshop on Testing of Communicating Systems, pages
179–196. Kluwer, 1999.

[4] Axel Belinfante. substfs. /n/sources/contrib/axel/substfs.

[5] CCITT. Specification and Description Language (SDL). Recommendation Z.100, ITU-T
General Secretariat, Geneva, 1992.

[6] H. Garavel. Open/Cæsar: An open software architecture for verification, simulation,
and testing. In B. Steffen, editor, Fourth Int. Workshop on Tools and Algorithms for
the Construction and Analysis of Systems (TACAS’98), pages 68–84. Lecture Notes in
Computer Science 1384, Springer-Verlag, 1998.

[7] G. J. Holzmann. Design and Validation of Computer Protocols. Prentice-Hall Inc., 1991.

[8] ISO. Information Processing Systems, Open Systems Interconnection, LOTOS - A For-
mal Description Technique Based on the Temporal Ordering of Observational Behaviour.
International Standard IS-8807. ISO, Geneva, 1989.

[9] KIDA Satoshi. libolfs. http://www.tip9ug.jp/who/kida/, /n/sources/kida/libolfs.tgz.

[10] J. Tretmans. Test Generation with Inputs, Outputs and Repetitive Quiescence. Software—
Concepts and Tools, 17(3):103–120, 1996.

[11] J. Tretmans and H. Brinksma. Torx: Automated model based testing. In A. Hartman
and K. Dussa-Ziegler, editors, Proc. 1st European Conf. on Model-Driven Software En-
gineering, 2003.


	Introduction and Motivation
	Preliminaries
	Labelled Transition Systems
	Implicit and Explicit Transition Relation

	The Labelled Transition File System Interface
	Requirements
	Design Considerations
	Directory Structure
	Initial Transition
	Multiple Incoming Transitions
	Removal of States and Transitions
	Implementations

	Extending The Labelled Transition Interface
	Introduction
	Requirements
	QID Structure
	Implementation

	A Client for Test Derivation Primitives
	Implementation

	Completing the Tester
	Experimental Results
	Without Driver and Adapter
	With Complete Tester

	Measuring Implementation Coverage on-the-fly
	Implementation

	Conclusions
	Future Work

