
LP49: Embedded system OS based on L4 and Plan 9
Yoshihide Sato *1*2

Katsumi Maruyama *1
{satoh-yoshihide, maruyama}@nii.ac.jp

*1 : National Institute of Informatics
 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo, Japan
*2 : Hitachi, Ltd.
 1-6-6 Marunouchi, Chiyoda-ku, Tokyo, Japan

1 Introduction
1.1 Distributed processing and embedded systems / home servers
Distributed processing is required in embedded systems and home servers (From here on in this
paper, embedded systems will be taken to include the idea of home servers). The distributed
processing model of Plan 9 is very effective and flexible, and it is attractive for embedded systems.
The 9P protocol is useful for inter-system communication. The private name space of Plan 9 also
enables flexible and safe distributed processing in embedded systems.

1.2 Easy program development of embedded systems
Making program development easy is very important. Plan 9 is a smart component-oriented OS: File
servers, etc., are organized as normal processes. Kernel devices (e.g. devxxx) are also component-
oriented. If the OS functions can be extended merely by adding components, an embedded system
developer can always use the optimum OS. In addition, the system servers in Plan 9 are user mode
processes; hence, Plan 9 enables easy program development.
Embedded systems have many different device drivers and an easy way of developing them is
desired. It is reported that about 70% of Windows-OS kernel bugs are caused by device drivers.
Device drivers are hoped to be able to be placed in user-mode processes instead of in kernel
programs.
An embedded system must run many threads effectively. This point is also important. Most
embedded systems require efficient concurrent processing, and light-weight thread facilities are
hoped. Processes of Plan 9 might be too heavy in some applications.

1.3 Robust system
Embedded systems must be robust. It is very bad that a bug in a device driver should cause a
system crash. The effect of a bug should be kept within the module. Every module should be as
independent as possible from other modules, and even a single module should be able to start up,
again after it goes down.

1.4 LP49: Collaboration of L4 and Plan 9
We are implementing a new OS that has the merits of Plan 9 and a micro-kernel. We have adapted
the L4 microkernel and are building the Plan 9-based OS modules on L4. The L4 was chosen for the
following reasons:

(1) L4 is a small micro-kernel, serving our purposes.
(2) L4 provides very efficient threads.
(3) L4 has a very efficient and flexible IPC function.

A micro-kernel OS has many processes, and they run with intercommunication. Hence, the IPC's
performance dominates the performance of the OS. The L4 microkernel's high-speed IPC enables us
to build a high-performance OS, and Plan 9's smart facilities attain flexible distributed processing:

a) Robust, Anti-failure OS
b) component-oriented OS
c) Distributed system
d) Effective message passing
e) Multiple thread processing

2 Basic Idea
The assumed applications of LP49 are embedded systems. Such applications use various kinds of
devices, and hence, many kind of device drivers must be developed. Device drivers are apt to have
bugs. Bugs in kernel-level device drivers often cause the system to crash; therefore, it would be
better if device drivers are placed outside the kernel. Hence, LP49 has user-level device drivers, and
OS user can change even if only one device driver into new driver. These features make debugging
easier.
LP49 will implement the 9P protocol, so it can communicate with Plan 9.
The following outlines LP49:

a) Robust, Anti-failure OS
The kernel of LP49 is a micro-kernel; hence failures have the minimum effect.
LP49 saves the running image of the server process, and if the server goes down, LP49
will load this image.
If a failure happens, LP49 will be able to continue only by restarting the failed servers.

b) component-oriented OS
LP49 has an OS service as a component, and LP49 supports dynamic plug-in and plug-
out.
It is easy to develop additional functions (including device drivers) for LP49.
We use Plan 9, which treats devices as components.
LP49 fits in any embedded system.

c) Distributed system
Users can transparently use all resources on the network by mounting of remote name
spaces of Plan 9.

d) Effective message passing
LP49 is a micro-kernel-based OS that uses high-speed IPC of the L4 microkernel and
maintains high performance.

e) Very light weight thread
LP49 uses the multiple thread capability of the L4 microkernel.
LP49 can support many threads for embedded systems.

3 Architecture
Figure 3.1 shows the architecture of LP49.

Figure 3.1 LP49 architecture

 A "process" is the fundamental and formal unit of program protection and failure isolation. As stated
above, device drivers are apt to have bugs, and they are hoped to be put in separate user-level
processes to minimize their effect. We planned to separate the device drivers from the Plan 9 kernel,
and make the device drivers part of a new user-level process called a "Resource Manager" (RM).
Note that if an RM has all the device drivers, the damage that would be caused if it crashed would be
very substantial. Hence, the device drivers are distributed in a number of RMs. Consequently, LP49
needs a process that manages other processes. We call this process the "Process Manager" (PM).

・L4 microkernel
The kernel provides logical space, threads, IPC, and page mapping.

・Process Manager
The PM creates and manages processes and threads.
The PM manages name spaces.
In the create() and open() system calls, the PM searches for a suitable RM.

L4 microkernel

Process
Manager

Resource
Manager

Server

Application

Library

User mode
User space

Kernel mode
Kernel spac
e

Application

Library

・Resource Managers
RMs are servers that provide the services of a kernel device driver of Plan 9 (i.e., devxxx,
resource tree).
RMs can be split into any number of processes.
A process in the same node throws an IPC message to the RM. The RM returns the result
to the process.
(RM doesn't speak the 9P protocol. Hence, the RM can't be directly accessed from a
remote node.)

・Servers
The Servers of LP49 are almost equivalent to those of Plan 9.
The Servers speak the 9P protocol. If they are exported can be directly accessed from
remote nodes.

・Other topics
All processes except for the L4 microkernel are user-mode processes. Of course, device
drivers and the interrupt handler are also user-mode processes.
Communication between an application and the PM/RM is done using IPC of L4.

4 How system calls, interrupt handling, etc., work
In LP49, certain user-mode processes provide the functions of the Plan 9 kernel. This section
describes the difference between LP49 and Plan 9.

4.1 System calls
In Plan 9, system calls cause a process switch into kernel mode, and requests are serviced inside by
kernel. In LP49, system calls cause IPCs to server processes.

Figure 4.1 Sequence of typical system calls

Figure 4.1 and the following list show how system calls work. The symbols in Figure 4.1 (e.g. m.1,
o.1) correspond to the symbols of the following.

1

Process Manager

m.3 Name space management

Determine the destined RM

Resource Manager

Read from device

Acquire Chan struct

r.3

o.4

o.5

o.3

m.2 mount()

o.2 open()

r.2 read()

legend symbols

system call from client inter-server IPC message

return to client

s.2 spawn()

Read from deviceo.6

Create logical space
and thread

s.3

Set up private name spaces.4

* x.1 is part of system calls. APL is omitted in this figure.

s.5 r.4

m.4

o.7

(1) spawn()
 Instead of fork(), LP49 provides spawn(). spawn() is processed as follows.

s.1 spawn() is called in APL(modified libc).
s.2 A message(L4 IPC) is sent to the PM.
s.3 The PM creates the logical space and thread by invoking L4.
s.4 The name space of the process is set up.
s.5 Reply is returned to the APL.

(2) mount()
m.1 mount() is called in APL.
m.2 Message is sent to the PM.
m.3 The PM modifies the private name space of APL.
m.4 A reply is returned to the APL.

(3) crate() and open()
o.1 create() / open() is called in APL.
o.2 A message is sent to the PM.
o.3 The PM determines the destination RM, which serves the requested resource or file

systems, by using the path name parameter and private name space.
o.4 The request is sent to the selected RM.
o.5 The RM creates a new Chan structure for this session.
o.6 The RM creates / opens the requested resource.
o.7 A reply is returned to the APL.

The PM manages process and private name space of any process. Thus, the PM can find
the target RM by using the name space and path name parameter.

(4) read(), write(), etc.
r.1 read() / write() is called in APL.
r.2 A message is sent to the RM.

 (The library can find the target RM from the file descriptor.)
r.3 The RM reads from / writes to the devices using the Chan structure.
r.4 A reply is returned to the APL.

4.2 Interrupt handling
L4 allows user-level interrupt handling. L4 catches the interrupt and sends an IPC-message to the
registered user-level thread.

Figure 4.2 shows the interrupt procedure. A brief explanation is as follows.

Figure 4.2 Interrupt sequence

(1) When a driver program is loaded, the interrupt handling thread in the RM is registered in the
L4 microkernel.

(1) Interrupt occurs.
(2) The L4 microkernel notices the interrupt, and sends the interrupt message to the registered

interrupt handling thread.
(3) The interrupt handler is executed.

4.3 9P-based distributed processing
LP49 will support the 9P protocol. Therefore, it will be able to import and mount remote resources,
and export local resources to remote node(i.e. import, exportfs).

L4 microkernel

Hardware Device

Resource Manager

Interrupt handling
thread

(2) Interrupt

(3) Interrupt Message

(1) Registered at
 device plug-in
time

(4) Execute

5 Robust system
5.1 Process replication
The L4 microkernel allows users to provide their own paging algorithm: Pagers are user-defined
threads which manage page mapping. When a thread is created, its pager is specified and bound.
When a thread accesses an unmapped logical address, a page fault message is sent to the bound
pager. The pager, on receiving the page fault message, allocates the requested page.
The pager can access any logical page of any process. In addition, the pager can take a snapshot of
the process memory space, and save it for later use. Another usage is for it to save address space
before running a procedure, and it can easily do roll-back.
When a server process goes down, LP49 does the following: matters.

(1) It reloads the saved running-image.
(2) It restarts all threads in the process using the same thread ID as when it was running.

The reason for using the same thread ID is that the L4 IPC destination is specified by the thread ID. If
the thread ID changes, the IPC from the client can't reach the server process. A server process
usually has a number of threads. Hence, the PM must have a thread ID table and be able to search
all thread IDs in any server process.

6 Current progress
6.1 Development environment
We chose to use the GCC environment instead of the Plan 9 compiler environment because:

– The L4 microkernel requires the GCC compiler.

– We are accustomed to the GCC environment.

6.2 Plan 9 program porting on L4 + GCC
The language specifications of the Plan 9 compiler are different from those of GCC, and source code
modifications are required in the porting.
Automatic conversion is possible, but we are converting them by hand. The most bothersome ones
are the "anonymous field" in struct{...}. There are too many anonymous fields. We think anonymous
fields are not a good idea, as they degrade program readability.
The automatic linking mechanism of "#pragma lib" is very good, and we hope that GCC will to have
this facility.

6.3 Current status

Figure 6.1 Single server version of LP49

Figure 6.1 shows the current status of LP49. We haven't separated the PM and RMs as of yet. The
most fundamental functions are starting to work, including an HDD driver and an Ether driver (for
AMD 79C970).
We are implementing the system calls.

APL

library

trap proc sysproc sysfile main
...

chan qio pgrp alloc
...

dev devsd devscsi devether devenv
...

sdata pci dma
ether
79c970

...

Pager

L4 microkernel

APL

library

yyy

xxx unfnished port

finished port

User mode
User space

Kernel mode
Kernel space

legend

single process

7 Related research

●Plan 9 − component-oriented distributed processing OS

●L4 − a microkernel with an efficient and flexible IPC and thread

As stated above, LP49 is a Plan 9-based OS on the L4 microkernel.

●Plan B − a Plan 9- based OS with a box abstraction instead of a file with ubiquitous environment

Plan B put resources int boxes, and users can transparently access both local and
remote resource. Of cource, every process has its own name space, as same as Plan 9.

●QNX − a commercial microkernel OS for embedded systems

The concept of LP49 is similar to that of QNX. Developing with QNX may be difficult
because it's a commercial OS and its source code is not open.

●Symbian OS− a popular specialized OS for cell-phones

Most of the Symbian OS is implemented in C++. Thus, applications can be developed
using object-orientation, and they are easily ported.

8 Future work and Conclusion
The Process Manager and Resource Managers are note separated in the current version that we are
now implementing. In the next step of our development, we will try to separate them into a PM and
several RMs, and do a complete evaluation.
Hence, new functions added to LP49 won't affect the existing functions. For example, when you add
a new device driver to LP49, you can create a new process for the device driver. Of course, the other
OS services are independent from the new process.

We think the collaboration between Plan 9 and the L4 microkernel will be useful in embedded
systems.

	1Introduction
	1.1Distributed processing and embedded systems / home servers
	1.2Easy program development of embedded systems
	1.3Robust system
	1.4LP49: Collaboration of L4 and Plan 9

	2Basic Idea
	3Architecture
	4How system calls, interrupt handling, etc., work
	4.1System calls
	4.2Interrupt handling
	4.39P-based distributed processing

	5Robust system
	5.1Process replication

	6Current progress
	6.1Development environment
	6.2Plan 9 program porting on L4 + GCC
	6.3Current status

	7Related research
	8Future work and Conclusion

