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Motivation 

Abstractions seem to be simultaneously the principal goal and bane of modern 
computer science[20]. This is particularly true in modern systems in which the 
system software stack has become a monumental tower of babel. At its 
foundation we have the virtualization engine or hypervisor, multiplexing system 
resources between multiple logical partitions. Each of these logical partitions is 
running an operating system which facilitates sharing of resources between 
distinct processes and also provides system service abstractions for file systems, 
networking, and process control. On top of the operating system we have a set 
of facilities for distributed computing such as a message-passing-toolkit 
(MPI)[21] or the OpenMP[22] libraries. On top of the distributed system layer we 
have virtual machines[23][24][25], providing yet another layer of abstraction, 
system services, and resource scheduling. On server systems a middleware layer 
[26] runs on top of the virtual machine providing another duplicate set of 
system services and yet another layer of abstraction. On top of the middleware 
runs the application, which itself may be an interpreter or execution engine 
(such as one for an XML business process) [27]. 

 

Figure 1. The modern software stack 



This is a worst case view of the modern software stack, but it is a surprisingly 
prevalent one within service-oriented-architectures [28]. Each layer has its own 
resource allocation and arbitration logic. For example, there are separate time-
sharing schedulers present in each layer. Each layer of abstraction hides its 
implementation details from the layer above it, making coordinated resource 
management impossible. What results is a debugging and performance tuning 
nightmare, with each layer adding both overhead and interference to the other 
layers. Additionally, the various services provided by each layer are usually 
immutable. Developers or users can not easily override the scheduler or memory 
allocation mechanisms of underlying layers. This is particularly true within the 
operating system layer, where privileged accounts are necessary to even interact with 
system services. 

Microkernels [29][30] attempted to solve this problem by moving operating system 
services into user-space. However, provisioning and configuration of these services 
was still a privileged operation. Plan 9's [31] user-composable name spaces provides a 
different approach allowing user replacement of typical system services -- but doesn't 
allow user control of more complex system services such as memory allocation or 
scheduling. IBM's research operating system K42[32], allowed hot-swapping of these 
lower level kernel services, but provided a Linux API/ABI abstraction which ultimately 
limited its flexibility. The problem was probably best approached by MIT's 
Exokernel[5] research operating system which limited itself to straightforward 
multiplexing of hardware resources, and relied upon optional libraries (libOS) to 
provide familiar operating system abstractions. Developer's could choose which library 
instance to link their application against, or "roll their own" service or abstraction. 
This allows for an unprecedented degree of flexibility in the implementation of 
operating system abstractions, allowing application specific customizations and 
optimizations. 

Microkernels, Plan 9, K42, and Exokernels never saw mainstream use principally 
because of their limited hardware platform support and lack of ability to run popular 
end-user applications. What seemed most desirable was a mainstream environment 
which could be used for the user environment and which could be "pushed out of the 
way" for execution of specialized applications which have their own system 
abstractions and services. Having the ability to leverage certain services and 
resources from the mainstream operating system would give developers the ability to 
focus effort on the handling of resources and services most critical to their 
application. Such a customizable environment would be particularly attractive within 
specialized workload domains such as high-performance computing and real-time 
systems.

 



Design 

We built upon the Exokernel idea by utilizing virtualization to implement resource 
multiplexing, and specialized application kernels with operating system services 
linked in as libraries (libOS). This allowed us to take advantage of hardware 
partitioning features present in the PowerPC as well as more recent Intel and AMD 
processors. The use of preexisting virtualization solutions such as IBM's Virtualization 
Engine[13][15] and Xen[1] allowed us to run mainstream operating systems alongside 
our libOS partitions giving end-users familiar development and use environments. 
Additionally, hardware virtualization support on certain chip architectures[33] lets us 
configure logical partitioned dramatically differently -- for example, we are able to 
run libOS partitions in real-mode with translation disabled avoiding TLB miss 
penalties. Finally hardware virtualization lets us dedicate processor cores to specific 
applications providing increased levels of determinism by removing OS-related and 
I/O interference to computation. 

Instead of requiring all device support be present in each libOS partition we leverage 
preexisting drivers running on the mainstream operating system partition or drivers 
running in specialized virtual I/O partitions. 9p[34], a simple, flexible communication 
protocol is used between partitions to provide access to disk, network, and other 
hardware resources. System services can be remoted in a similar fashion allowing peer 
partitions to provide file systems, networking stacks, and application services. In this 
manner a libOS application may chose to use a local custom device driver or service, 
or remote that service to another partition. Access to these hardware resources or 
system services can be provided by multiple peer partitions allowing for the 
possibility of redundancy and recovery during partition failures. The protocol used to 
communicate between partitions should be generic enough to be usable across the 
network allowing the same infrastructure to be deployed on scale out clusters of 
systems as well as large-scale SMP systems. 

Figure 2: PROSE System Software Stack 



Implementation 

A hypervisor, the software agents which manage the logical partitioning of the 
hardware, form the foundation of our system software stack. It provides high-level 
memory, page table and interrupt management as well as partition scheduling 
policies. We based our initial prototype on the architecture employed by the IBM 
research hypervisor, rHype[13]. rHype is a small (~30k lines of code), low-latency, 
modular, multi-platform (supports x86 and PowerPC) para-virtualization engine. 
Logical partitions (LPARs) access rHype services through a "system call" like 
mechanism known as a hcall. We have also ported our libOS framework to run on the 
Xen hypervisor on the PowerPC platform. 

As mentioned previously, a mainstream operating system, Linux, provides the primary 
user interface to launching, monitoring and controlling libOS partitions. This operating 
system partition is designated the "controller partition" or Dom0, and has special 
authority to allocate and control the partitioned resources of the machine. A special 
wrapper script (varying depending on the underlying hypervisor) is used to manage 
the creation of new logical partitions, starting necessary support applications, and 
redirecting standard I/O. 

Within rHype a special device is used to issue hcalls and communicate with peer 
partitions. This device can be memory mapped to provide a window into the private 
memory of the libOS partitions.  With our Xen implementation, we use the Xentools 
API to setup a shared memory window into the application partition's memory.  Ring 
buffers are established within the libOS partition and can be used for communication 
with peer partitions including the controller. In the prototype, these ring buffers are 
statically compiled within the application. The wrapper scripts simply examine the 
application image's symbol information (using nm(1)) to determine the location of the 
ring buffer within the application before launching it. Since the prototype I/O is 
handled by user-space applications on the controller, a simple poll methodology is 
used to detect I/O activity. 

Figure 3: PROSE I/O Prototype 



Resources and services are provided to libOS partitions via the 9p resource sharing 
protocol, originally developed as part of the Plan 9 operating system. 9p is the 
protocol which runs over the previously mentioned I/O channels. Some resources such 
as the controller's file system and access to its character and block devices may be 
provided by 9p directly. However, most resources are gatewayed by synthetic file 
server applications. These servers export hierarchical file systems representing system 
services and resources such as the TCP/IP stack, console I/O, or windowing system. 
More information on system services and resources via Plan 9 synthetic file systems 
can be found in the various Plan 9 technical papers and documentation[9].

We had implemented two stand-alone synthetic file system gateways as part of the 
file system prototype. There is a network gateway which provides socket services in a 
fashion similar to the Plan 9 devip[9] device. We also have a partial implementation 
of the cons[9] device which provides console interactions with the libOS partition as 
well as a libOS access to system information such as time.  The synthetic file systems 
are organized within the global Linux name space by mounting them using the v9fs 
Linux kernel module[16]. This name space is then re-exported to the libOS partition 
by the npfs[36] application which gateways Posix file system name spaces to 9p.  

Stability and performance concerns, along with the desire to quickly support a 
broader range of service and resource gateways, led us to using the Inferno [35] 
environment as a replacement for the v9fs/npfs stack.   Inferno is a distributed 
operating system which also runs as hosted middleware on many more traditional 
operating systems (Linux, Windows, etc.).  It also uses the 9p protocol for resource 
sharing, and in its hosted environment contains a great number of gateway synthetic 
file systems to the underlying operating-system's resources and services.  We ported 
the Inferno hosted environment to Linux/PPC and added a new device file system 
(devxenchan) which is used to manage shared memory channels to the underlying 
application partitions.  Like the Plan 9 network statcks (such as devip), devxenchan 
operates as a 'clone' file system – allowing a single inferno instance to communicate 
with multiple child partitions.

A side benefit of using Inferno as a Dom0 infrastructure was a natural path to cluster 
solutions.  The Dom0 partitions can export control interfaces over TCP/IP which can 
then be leveraged by a front-end node.  By mounting resources (such as file system or 
networking stacks) from the front-end node, a whole cluster of machines can be 
managed as a single node.  This provides a very attractive solution for bladed-clusters 
and other scale-out systems.

Evaluation 

Previous papers have used micro benchmarks to explore performance benefits [37] 
from using libOS partitions for HPC applications [6] and the ability of hypervisors to 
control OS induced noise[16]. In this paper we focus on the performance of inter-
partition I/O within the prototype.



 We have performed preliminary evaluations using identically configured IBM Blade 
Center JS20 server blades running XenPPC, Dom0 Linux, and DomU's running LibOS 
PROSE test applications.  The first thing we measured was the end-to-end latency of a 
9p RPC message.  In order to collect the results we generated 10,000 writes of a 
particular payload size to /dev/null.  Each measurement was taken ten times and the 
average is presented.  There was very little variance (< 1%) in the results collected. 
We took measurements of the libOS application writing to Inferno's /dev/null (shown 
as the libOS->Inferno data line) as well as writing to the underlying Linux /dev/null 
(shown as the libOS->UNIX data line).  We also took measurements writing from the 
libOS through a transitive mount on the Dom0 Inferno to a remote Inferno instance 
(shown as libOS->remote) to show the relative performance of accessing resources on 
a front-end node.  As points of comparison we include measurements taken from 
Linux to a local and remote Inferno server using v9fs and tcp/ip (labeled Linux-
>Inferno, and Linux->Remote respectively).

As can be seen from the graph, the latency over the shared memory channel is 
extremely low, although copy-overhead almost doubles the latency for larger 
payloads.  The primary reason for the low-latency is the extremely greedy polling 
algorithm used for the shared memory channel. An unfortunate side-effect of this 
polling is a constant high load on the Dom0 node.   Accessing resources over transitive 
mounts increases the latency proportionately with any access of resources over 
traditional tcp/ip sockets.  The overhead of multiple copies of payload really start to 
degrade performance above 8k payloads suggesting that significant benefit can be 
gained  by implementing a zero-copy path for payloads traversing shared memory.
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Future Work 

Our experiences with the initial prototype have identified multiple areas for further 
exploration and improvement. Our polled-communication mechanism works well when 
you can dedicate a processor core (or multiple processor cores) to an I/O partition -- 
however, in situations where you are sharing a computational core an interrupt driven 
mechanism would be much more preferable. The implementation of interrupt driven 
I/O varies from hypervisor to hypervisor and can either be built into the kernel or 
gatewayed to user space.

On PAPR [33] compliant architectures such as the PowerPC, inter-partition interrupt-
driven I/O is managed by CR/Q channels. An example CR/Q driver is the Linux Vscsi 
driver which remotes SCSI operations over shared memory between partitions. Our 
current plan is to abstract out the transport layer from the existing Vscsi [38] driver 
and create a generic CR/Q service for Linux. We can then build 9p communication 
channels on top of the generic service, and even expose it to user-space as a new 
physical network using Linux packet sockets. Similar signaling mechanisms exist in 
other para-virtualization environments such as Xen.

A major performance problem with our existing transport solution in the number of 
copies it introduces with each transfer of the data. This is particularly pronounced 
with the use of v9fs to mount synthetic file systems before their re-export across the 
shared memory link. Data going to a synthetic file systems such as the TCP/IP stack 
makes 4 context switches and copies the data 8 times. If the TCP/IP stack service is 
on a remote system this number increases. Almost all of these copies and most of the 
context switches are unnecessary. We can avoid them by building the core of the 9p 
server into the kernel module. This serves the dual purpose of allowing it a tighter 
coupling to transports and allowing us to bypass paths through user space when 
talking with the v9fs driver. Further performance optimization could be gained by 
moving kernel service gateways (such at the TCP/IP stack) into the kernel as well.

Another source of overhead is our use of transitive mounts. In other words, we 
compose a libOS partition's name space on the "controller" by mounting services from 
both local and remote file servers, and then we re-export the name space with npfs 
or inferno. While this provides a very elegant configuration and management 
mechanism, it does so at the cost of performance. If libOS partitions were able to 
compose their own name spaces directly, and additional copy and context switch can 
be saved. One adjunct to this idea is the idea of using transitive I/O channels instead 
of transitive file system mounts. This would allow the "controller" to compose a 
directory of I/O channels to various system services (whether local or remote) and the 
libOS partition would attach to these directly. This could provide a compromise 
between elegance and performance.

Since 9p can also be used across network interconnects, resources and services 
can be located anywhere within the network. By using a synthetic file server to 
manage logical partitions these same mechanisms can be used to allow libOS 



partition creation and control across the entire cluster. Such an interface could 
be built as an extension to LANL's xcpu service [39].

We have performed our evaluation on logical partitioned systems such as Xen and 
rHype, but we have yet to a study comparing our I/O methodology with the native 
I/O virtualization methods present with Xen and PAPR.  We'd also like to evaluate 
our mechanisms on heterogeneous systems such as the Cell processor, or 
statically partitioned environments such as Blue Gene. Another area of 
exploration is to look at I/O devices directly providing partitioned 9p interfaces 
to their resource. This could be used for storage controllers, TCP/IP offload, or 
graphics controllers.
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