
 
OpenRD-Client 

User Guide 
 

 

 
 

 

 

 

 

 

 

  
 

 
 
 
 

www.einfochips.com 

Revision: v1.0    

Last Update: 04-May-2009 



 

 
      

 

OpenRD-Client - Marvell® 88F6281 based Reference Design 

Designed for Marvell® by eInfochips 

Page 2 of 76 

Contents 
 
Revision History ..............................................................................................................................5 

About This Manual ..........................................................................................................................6 

1. Overview..................................................................................................................................7 
1.1 Key Features .....................................................................................................................8 
1.2 OpenRD-Client Graphical Overview...................................................................................9 
1.3 Hardware Overview .........................................................................................................11 
1.3.1 External Interfaces .......................................................................................................11 
1.3.2 Power and System Clocks ...........................................................................................13 
1.3.3 Board Debug interface and Manual Reset ...................................................................13 
1.4 Package Contents ...........................................................................................................13 
1.5 Technical Specifications ..................................................................................................14 

2. Getting Started with the OpenRD-Client................................................................................15 
2.1 Setup Requirements........................................................................................................15 
2.2 Hardware Setup...............................................................................................................15 
2.3 Default Network Configurations .......................................................................................16 
2.4 Default Login Information ................................................................................................16 
2.5 Linux Logo on VGA Monitor Screen ................................................................................16 

3. Building OpenRD Software using source code .....................................................................17 
3.1 Configuring and building U-boot ......................................................................................17 
3.2 Configuring and building Linux Kernel using LSP............................................................17 
3.3 Building File Systems ......................................................................................................18 
3.3.1 Building JFFS2 file system image ................................................................................18 
3.3.2 Building UBI file system image.....................................................................................19 

4. Writing OpenRD Software to NAND flash .............................................................................22 
4.1 Writing U-boot .................................................................................................................22 
4.2 Writing Linux Kernel ........................................................................................................23 
4.3 Writing File Systems........................................................................................................24 
4.3.1 Writing JFFS2 file system image ..................................................................................24 
4.3.2 Writing UBIFS image....................................................................................................26 

5. On-Board Software................................................................................................................29 
5.1 Flash Memory Organization ............................................................................................29 
5.2 Flash Write Access..........................................................................................................29 
5.3 Functional Test Software.................................................................................................30 
5.4 Manufacturing Diagnostics Screen Mockup (Success case) ...........................................32 
5.5 Manufacturing Diagnostics Screen Mockup (Failure case)..............................................33 
5.6 POST (Power On Self Test) Screen Mockup (Success case) .........................................34 
5.7 POST (Power On Self Test) Screen Mockup (Failure case)............................................36 

6. Prepare SATA HDD with Fedora Core 8 ARM File System ..................................................38 

7. Ubuntu 9.04 Jaunty File System............................................................................................39 
7.1 Building File Systems ......................................................................................................39 
7.1.1 Building JFFS2 file system image ................................................................................39 
7.1.2 Building UBI file system image.....................................................................................40 
7.2 Writing File Systems........................................................................................................41 
7.2.1 Writing JFFS2 file system image ..................................................................................41 
7.2.2 Writing UBIFS image....................................................................................................43 

8. USB Recovery .......................................................................................................................45 
8.1 USB Recovery Sample Log.............................................................................................46 
8.2 U-Boot Terms for USB Recovery.....................................................................................54 
8.3 Building flashware.img.....................................................................................................56 



 

 
      

 

OpenRD-Client - Marvell® 88F6281 based Reference Design 

Designed for Marvell® by eInfochips 

Page 3 of 76 

9. Interfaces/Peripherals Not Tested .........................................................................................58 

10. Known Issues......................................................................................................................59 

11. Power Supply Notice...........................................................................................................60 

12. Further Reading ..................................................................................................................61 

Appendix A ....................................................................................................................................62 

Appendix B ....................................................................................................................................66 

Appendix C....................................................................................................................................67 

Appendix D....................................................................................................................................68 

Appendix E ....................................................................................................................................69 

Appendix F ....................................................................................................................................70 

Appendix G....................................................................................................................................71 

About eInfochips............................................................................................................................76 
 

 

 



 

 
      

 

OpenRD-Client - Marvell® 88F6281 based Reference Design 

Designed for Marvell® by eInfochips 

Page 4 of 76 

Figures 
 
 
Figure 1 OpenRD-Client Top View ..................................................................................................9 
Figure 2 OpenRD-Client Bottom View ...........................................................................................10 
Figure 3 OpenRD-Client: Hardware Overview...............................................................................11 
Figure 4 OpenRD-Client - USB, GbE0, and Power Supply ...........................................................15 
Figure 5 OpenRD-Client – VGA ....................................................................................................15 
Figure 6 Linux Logo on VGA Monitor ............................................................................................16 
Figure 7 Flash Memory Organization ............................................................................................29 
Figure 8 Flash Write Access .........................................................................................................29 
Figure 9 Functional Test Software ................................................................................................31 
Figure 10 System Properties.........................................................................................................63 
Figure 11 Device Manager ............................................................................................................63 
Figure 12 Hyper Terminal..............................................................................................................64 
Figure 13 COM Properties ............................................................................................................64 
Figure 14 U-Boot prompt on Console............................................................................................65 
Figure 15 Configuring TFTP Server on Host PC...........................................................................66 
 

 

 
 



 

 
      

 

OpenRD-Client - Marvell® 88F6281 based Reference Design 

Designed for Marvell® by eInfochips 

Page 5 of 76 

Revision History 
# Revision Date Description 
1 1.0 04-May-2009 First version created 



 

 
      

 

OpenRD-Client - Marvell® 88F6281 based Reference Design 

Designed for Marvell® by eInfochips 

Page 6 of 76 

About This Manual 
This manual provides an overview of the OpenRD-Client reference design based on Marvell® 
88F6281 SoC. It provides details of the hardware and associated software for the OpenRD-
Client. 

Abbreviation and Acronyms  

MTD Memory Technology Device 

POST Power On Self Test 

GbE Gigabit Ethernet 

SoC System-on-Chip 

Document Convention 
Following are document convention followed: 
 

Command Indicates command to be executed on Linux Shell 

Note Indicates important note to be taken into consideration 
 

Path Convention 
 
Paths mentioned in this user guide are generated using zip packages provided on OpenRD 
Development Kit DVD: 
 
<dvd-home>/openrd-devkit-v1.0/openrd_uboot/  openrd-devkit-v1.0/openrd_uboot.zip 
 
<dvd-home>/openrd-devkit-v1.0/openrd_lsp/  openrd-devkit-v1.0/openrd_lsp.zip 
 
<dvd-home>/openrd-devkit-v1.0/openrd_openocd/  openrd-devkit-v1.0/openrd_openocd.zip 
 
<dvd-home>/openrd-devkit-v1.0/openrd_hardware/  openrd-devkit-v1.0/openrd_hardware.zip 
 
<dvd-home>/openrd-devkit-v1.0/openrd_host_swsupportpackage/  openrd-devkit-
v1.0/openrd_host_swsupportpackage.zip 
 
<dvd-home>/openrd-devkit-v1.0/openrd_usbrecovery/  openrd-devkit-
v1.0/openrd_usbrecovery.zip 
 
<dvd-home>/openrd-devkit-v1.0/openrd_filesystem/  openrd-devkit-v1.0/openrd_filesystem.zip 
 
<dvd-home>/openrd-devkit-v1.0/openrd_documentation/  openrd-devkit-
v1.0/openrd_documentation.zip 
 
<dvd-home>/openrd-devkit-v1.0/openrd_filesystem-ubuntu/  openrd-devkit-
v1.0/openrd_filesystem-ubuntu.zip 
 
 
 

 



 

 
      

 

OpenRD-Client - Marvell® 88F6281 based Reference Design 

Designed for Marvell® by eInfochips 

Page 7 of 76 

1. Overview 

The OpenRD-Client is powered by Marvell’s Kirkwood series™ 88F6281 SoC, featuring Marvell 
SheevaTM CPU technology. The OpenRD-Client is a compact, scalable, low power, RoHS 
compliant and fan less reference design, allowing one to leverage open source development for 
high end applications. The reference design is equipped with full range of interfaces available in 
the Kirkwood SeriesTM of SoCs. The key interfaces include Gigabit Ethernet, USB 2.0, SATA 2.0, 
eSATA, SD Memory Card/SDIO, UART, SMBus, TDM (Optional), Mini USB and JTAG port for 
debugging. In addition, the OpenRD-Client extends its capabilities with a 2D-GPU (Graphics 
Processing Unit) with a VGA Connector and Audio In/Out.  

The OpenRD-Client design is targeted for wide range of applications supporting bulk storage, 
faster connectivity, higher throughput and performance at lower power. For example, an 
“Embedded Client System” solution can be readily assembled with Gigabit Ethernet connectivity, 
an onboard 2.5" SATA connector for hard disk and an optional enclosure. 



 

 
      

 

OpenRD-Client - Marvell® 88F6281 based Reference Design 

Designed for Marvell® by eInfochips 

Page 8 of 76 

1.1 Key Features 
 

CPU 

• High performance Marvell® Sheeva™ 
@ 1.2 GHz  

• 16/16KB I/D 4 way set associative L1 
caches  

• Unified 256KB 4-way associated L2 
cache   

• 32 bit and 16 bit RISC architecture, 
Compliant with ARMv5TE  

• Supports both big & little endian mode  
• Includes MMU to support virtual 

memory  

On Board Memory 

• 512 MB DDR2-800 SDRAM (128MB x4 
chips) 

• 512 MB NAND Flash  

Power Requirement 

• 12 volts power supply  

Power Monitoring 

• SMBus  

Storage 

• SD Card  
• SATA & eSATA Ports for HDD and 

Optical Storage Devices  

On Board Graphic 

• VGA support up to 1280x1024 at 60 Hz  
• VGA Memory size of 64MB 

On Board I/O 

• 7 USB 2.0 Port with integrated PHYs  
• 2 GbE Ports with GMII and RGMII 

support  
• SATA & eSATA Ports with integrated 

Marvell 3 Gbps SATA  PHYs  
• UART with RS232/RS485 interface  
• USB interface with Debug supports 

JTAG & Serial Console  
• Audio In/Out Interface  
• MODBUS support 
• Header Connector for TDM (Optional)  

Operating System 

• Linux 2.6.22.18 
• Fedora Core 8 File System 

 

  

 

 



 

 
      

 

OpenRD-Client - Marvell® 88F6281 based Reference Design 

Designed for Marvell® by eInfochips 

Page 9 of 76 

1.2 OpenRD-Client Graphical Overview 

 
 

Figure 1 OpenRD-Client Top View 
 
 
 
 



 

 
      

 

OpenRD-Client - Marvell® 88F6281 based Reference Design 

Designed for Marvell® by eInfochips 

Page 10 of 76 

 
Figure 2 OpenRD-Client Bottom View 



 

 
      

 

OpenRD-Client - Marvell® 88F6281 based Reference Design 

Designed for Marvell® by eInfochips 

Page 11 of 76 

1.3 Hardware Overview 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3 OpenRD-Client: Hardware Overview 
 

* indicates optional 
 

1.3.1  External Interfaces 
DDR2 Memory 

The 88F6281 SoC supports up to 4 banks of memory, each bank can support up to a 
maximum of 512MB address space. 
 
The OpenRD-Client is designed to provide 512 MB of DRAM.  The DDR2 banks are 
accessible through a DDR2 interface and using CS0# and CS1# chip select decoder 
feature of the 88F6281 DDR2 interface. 
 
DDR2 memory interface runs at 400 MHZ clock frequency and double data rate at 800 
MHz. 



 

 
      

 

OpenRD-Client - Marvell® 88F6281 based Reference Design 

Designed for Marvell® by eInfochips 

Page 12 of 76 

 
NAND Memory  

The 88F6281 uses 4Gb density, 8 bit single NAND Flash device. The NAND flash device 
is accessible through glueless NAND interface controller built in the 88F6281 SoC. The 
interface controller can support bootstrap sequence accesses on page 0 from the device. 
 
SD Card 

The OpenRD-Client provides interface and connector for SD memory card. 
 
USB 2.0 

The 88F6281 contains a Universal Serial Bus 2.0 port, which includes an embedded USB 
2.0 PHY. The SoC’s USB interface can support either Host or Device mode. The 
OpenRD-Client has been designed to support only USB HOST mode. The OpenRD-
Client provides total 7 USB 2.0 ports. Each USB 2.0 port features 480 Mbps, 12Mbps and 
1.5Mbps data rate, bit stuff error detection, NRZ bit stuffing and built in FS/HS termination 
signaling. Each USB port can provide up to 500mA of current with maximum limit of 
3500mA for 7 USB ports. 
 
SATA & eSATA 

The 88F6281 has two integrated 3 Gbps SATA ports. OpenRD-Client provides one 
internal SATA and one external SATA (eSATA) Port. HDD and Optical Storage Devices 
can be connected to these ports. These ports are ideal to provide storage interface for 
NAS, media servers and RAID applications. 
 
Gigabit Ethernet (GbE) 

The 88F6281 has two built-in GbE controllers that can support up to four different modes 
of operation. These modes are RGMII, MII, MMII and GMII. Each port is fully IEEE 802.3 
compliant 10/100/1000 Mb MAC. Built in MAC of 88F6281 SoC and 88E1116 GbE PHY 
chip provides complete solution for Gigabit Ethernet connectivity. The OpenRD-Client 
supports two RGMII GbE port. These ports are ideal for network interface, ISCSI RAID 
storage etc. 
 
Audio 

The OpenRD-Client interfaces I2S port of 88F6281 with CS42L51-CNZ audio CODEC 
chip on board. The OpenRD-Client board provides two audio connectors, one for mono 
input from microphone and another for stereo quality audio output. 
 
VGA 

The OpenRD-Client has XGI’s Volari-Z11, 2D Graphics processor on board The 
OpenRD-Client is designed to support up to 1280x1024 display resolution at 60 Hz. For 
better performance, the Volari chip has been supported with 512 Mb (64MB) of additional 
frame buffer DDR2 Memory. 
 
UART 

The 88F6281 has two built-in UART interfaces: UART0 and UART1. UART0 has been 
used as debug console along with FT2232D chip and it is available at mini USB 



 

 
      

 

OpenRD-Client - Marvell® 88F6281 based Reference Design 

Designed for Marvell® by eInfochips 

Page 13 of 76 

connector (CON22). UART0 is default mode for debug console display. UART1 can be 
available either at RS232 connector (CON15) or RS485 connector (CON16). User may 
note that CON16 is RJ45 type of connector which is used for RS485 interface.  
 
MODBUS 

The OpenRD-Client provides full duplex RS485 transceiver on board to support Industrial 
MODBUS interface over connector CON16.  
 
SPI interface (Optional header) 

The OpenRD-Client provides an optional header (CON26) for SPI interface. SPI 
EEPROM or any other peripheral, which requires SPI interfacing, can be connected to 
this interface. 
 

1.3.2  Power and System Clocks 
The OpenRD-Client is budgeted for 36W (12V/3A) D.C. power supply. Average power 
consumption is around 7.2W. Maximum power consumption measured with all 7 USB 
ports, HDD and Ethernet operational is 29.9W. In idle state system draws power of 
around 4.8W. 
 
The OpenRD-Client provides required clock reference to different functionalities of the 
board. The OpenRD-Client board features: 25MHz master clock source for 88F6281 
SoC, 24MHz for 7 port USB hub, 25MHz for 88E1116R GbE PHY device, 14.31MHz for 
Graphics processor Z11, 6MHz for FT2232D chip and 32.768 KHz clock source for RTC 
oscillator of 88F6281. 
 
The 88F6281 derive internal clocks from on board 25MHz clock source as per the 
configuration of strapping pins at power ON. The on-chip PLL frequency multiplier and 
the prescaler can generate programmable CPU clock between 800 MHz to 1200 MHz. 
The 88F6281 generates 400MHz clock source for DDR2 interface. It also generates clock 
sources for interfaces such as Gigabit Ethernet, PCIe, I2S Audio, SDIO, SPI and TWSI. 
 

1.3.3  Board Debug interface and Manual Reset 
The OpenRD-Client features two interface options for debugging. One is a standard 20-
pin box header (CON25) located at the bottom side of PCB. Second is a mini USB 
connection featured by FDT2322D device.  
 
The 20-pin header enables direct connection of an ICE to the JTAG inputs to the 
88F6281 SoC. This is commonly interfaced through a Lauterbach probe. The second 
option is via a mini USB connection, it is a cost effective interface for the 88F6281 JTAG 
via mini USB cable. It utilizes an Open On-chip Debug codes (Open OCD), in which it’s 
been widely used by the open source codes Linux community to develop debug 
capability and flash capability. You can find more details by performing a web search 
under the “OpenOCD” or “FDT2322D” key subject. 
 
Pressing reset switch SW2 can manually reset OpenRD-Client. 

 

1.4 Package Contents 
1. OpenRD-Client System Board 
2. DVD including Software Packages, Installers, Schematics, Layout files, User Guide, 

Quick Start Guide, Brochure 



 

 
      

 

OpenRD-Client - Marvell® 88F6281 based Reference Design 

Designed for Marvell® by eInfochips 

Page 14 of 76 

3. 12V/3A Power Adapter 
4. Mini USB cable 
5. CAT6 cable 
6. Enclosure (Optional) 

 

1.5 Technical Specifications 
Board Size 8.82" x 6.25" x 0.063" 
Operating Temperature 0 C to 50 C 
Storage Temperature -40 C to 85 C 
Power 12V/3A (36W) 
Onboard Interfaces 2 x Gigabit Ethernet 

7 x USB 
1 x VGA 
1 x Audio (In/Out) 
1 x SD 
1 x SMBus 
1 x RS232 
1 x RS485 
1 x Debug (JTAG, RS-232 for console) 
1 x eSATA 
1 x SATA (2.5” HDD Connector) 

Optional Enclosure Size 8.6" x 6.5" x 1.2" 
 



 

 
      

 

OpenRD-Client - Marvell® 88F6281 based Reference Design 

Designed for Marvell® by eInfochips 

Page 15 of 76 

2. Getting Started with the OpenRD-Client 
2.1 Setup Requirements 

1. 12V/3A DC Power supply 
2. CAT5/CAT6 cable for network connection 
3. One VGA monitor, USB keyboard and USB mouse connected to OpenRD-Client system. 
4. USB cable (type A to mini B) for the system console. 
5. One MS windows/Linux machine with at least 1 USB port to connect USB cable as listed 

above in point # 4. For further details on setting up Linux/Windows Host with appropriate 
drivers, please refer Appendix A. 

 

2.2 Hardware Setup 
 

Following procedure explains hardware setup for OpenRD-Client System 

 
1. Connect CAT6/CAT5 cable to GbE 0 or GbE 1 port of the system (Figure 4). Make sure 

the other end of cable is connected to Ethernet hub/switch/router.  
 
2. Connect USB keyboard and USB mouse to USB ports of the system. Also connect the 

power supply cable. (Figure 4) 
 

 
 

Figure 4 OpenRD-Client - USB, GbE0, and Power Supply  
 
3. Connect VGA monitor to the VGA port of the system. (Figure 5) 

 

 
 

Figure 5 OpenRD-Client – VGA 
4. Power on the system. 



 

 
      

 

OpenRD-Client - Marvell® 88F6281 based Reference Design 

Designed for Marvell® by eInfochips 

Page 16 of 76 

5. Please wait till the OpenRD-Client system boots up. It will display Linux boot up 

messages on the monitor. 

6. Once system boots up, it will display log-in screen on the monitor. 

7.  Provide username: ‘root’ and password ‘nosoup4u’. 

2.3 Default Network Configurations 
By default, the OpenRD-Client will have following network configurations. 
 
For GbE0 
IP Address: 192.168.1.1 
Netmask: 255.255.255.0 
 
For GbE1 
IP Address: 192.168.2.1 
Netmask: 255.255.255.0 
 

2.4 Default Login Information 
By default, the OpenRD-Client has following user/pass. 
 
Username: admin, Password: openrd 
Username: root, Password: nosoup4u 

2.5 Linux Logo on VGA Monitor Screen 
Once you power on the OpenRD-Client, Linux will start booting and you will get following penguin 
logo on the VGA screen, provided that you have connected VGA monitor to your board 

 
 

 
 

Figure 6 Linux Logo on VGA Monitor 



 

 
      

 

OpenRD-Client - Marvell® 88F6281 based Reference Design 

Designed for Marvell® by eInfochips 

Page 17 of 76 

3. Building OpenRD Software using source code 
 
Pre-requisite 
 
1. Make sure to setup GCC Toolchain, mkimage as per Appendix C. 
 

3.1 Configuring and building U-boot 
This section provides the procedure to configure the u-boot 1.1.4 with the 0001-OpenRD-
Support-Uboot.patch for the OpenRD platform based on KirkwoodTM 6281(A0).  
  
1. On a Linux machine, go to the ‘home’ directory and create a directory ‘openrd’.  
 
/home# mkdir openrd 
  
2. Copy u-boot-1.1.4 source file and patch for OpenRD in /home/openrd folder from <dvd-
home>/openrd-devkit-v1.0/openrd_uboot/source/: u-boot-1.1.4.tar.gz, 0001-OpenRD-Support-
Uboot.patch.gz 
  
3. Expand the source in the /home/openrd folder  
 
~/openrd # tar –zxvf u-boot-1.1.4.tar.gz 
~/openrd # gunzip 0001-OpenRD-Support-Uboot.patch.gz 
  
4. Change directory to u-boot-1.1.4 
 
~/openrd # cd u-boot-1.1.4 
  
5. Apply OpenRD support patch to u-boot-1.1.4 
 
~/openrd/u-boot-1.1.4 # patch –p1 < ../0001-OpenRD-Support-Uboot.patch 
  
6. Do a make mrproper for a total clean build.  
 
~/openrd/u-boot-1.1.4 # make mrproper  
  
7. Configure u-boot for OpenRD  
 
~/openrd/u-boot-1.1.4 # make OpenRD88f6281a_config NBOOT=1 LE=1  
  
8. Create u-boot image 
 
~/openrd/linux-2.6.22.18 # make 
  
9. Rename it as u-boot.bin.openrd  
 
~/openrd/linux-2.6.22.18 # cp u-boot-OpenRD88f6281a_400rd_nand.bin  
/home/openrd/uboot.bin.openrd 
 

3.2 Configuring and building Linux Kernel using LSP 
This section provides the procedure to configure the Linux kernel 2.6.22.18 with the 0001-openrd-
support-LSP.patch for the OpenRD platform based on KirkwoodTM 6281(A0).  
  
1. On a Linux machine, go to the ‘home’ directory and create a directory ‘openrd’.  Ignore this 



 

 
      

 

OpenRD-Client - Marvell® 88F6281 based Reference Design 

Designed for Marvell® by eInfochips 

Page 18 of 76 

step, if /home/openrd directory is already created. 
 
/home# mkdir openrd 
  
2. Copy the combined sources of the Linux kernel and patch for OpenRD in  
/home/openrd folder from <dvd-home>/openrd-devkit-v1.0/openrd_lsp/source/: linux-
2.6.22.18.tar.gz, 0001-OpenRD-Support-LSP.patch.gz 
  
3. Expand the source in the /home/openrd folder  
 
~/openrd #  tar –zxvf linux-2.6.22.18.tar.gz 
~/openrd # gunzip 0001-OpenRD-Support-LSP.patch.gz 
  
4. Change directory to linux-2.6.22.18 
 
~/openrd #  cd linux-2.6.22.18  
  
5. Apply OpenRD support patch to linux-2.6.22.18 
 
~/openrd/linux-2.6.22.18 # patch –p1 < ../0001-OpenRD-Support-LSP.patch  
  
6. Do a make mrproper for a total clean build.  
 
~/openrd/linux-2.6.22.18 # make mrproper  
  
7. Configure linux-2.6.22.18 for OpenRD  
 
~/openrd/linux-2.6.22.18 # make mv88f6281_defconfig  
  
8. Create a uImage  
 
~/openrd/linux-2.6.22.18 # make uImage  
  
9. Rename it as uImage.openrd  
 
~/openrd/linux-2.6.22.18 # cp arch/arm/boot/uImage  
/home/openrd/uImage.openrd  
 

3.3 Building File Systems 
3.3.1  Building JFFS2 file system image 

 Pre-requisites 
 

a. On the linux host, copy fc8.release.x11.openrd.nand.src.tar.gz to /home/openrd.   This 
can be obtained from the CD/DVD, which is shipped along with the OpenRD-Client unit. 
 
Path of file system in CD/DVD:  

  openrd-devkit-v1.0/openrd_filesystem/source/fc8.release.x11.openrd.nand.src.tar.gz 
 
b. Install latest mtd-utils package on Linux host.  If mtd-utils is not installed, following steps 

must be followed for installation. 
  
  Download the rpm for host machine distribution from  

http://rpmfind.net/linux/rpm2html/search.php?query=mtd-utils 
 

After downloading rpm, install it as: 



 

 
      

 

OpenRD-Client - Marvell® 88F6281 based Reference Design 

Designed for Marvell® by eInfochips 

Page 19 of 76 

 
# rpm –ivh <mtd-utils-rpmname>  
 
To check, if you already have mkfs.jffs2 installed or not, use following command: 
 
-sh-3.2# find . -name mkfs.jffs2 
 
OR 
 
For Linux host distributions such as ubuntu, type following command on Linux 
host  (Note: internet connection is required to carry out this step) 

 
# sudo apt-get install mtd-utils 
 
OR 
 
Refer Appendix F to install pre-compiled mtd-utils binaries. 

 
1. Extract Fedora Core 8 release file system source (Note: run this command with root 

user) 
  
 # cd /home/openrd 
 /home/openrd # tar zxvf fc8.release.x11.openrd.nand.src.tar.gz 
 

Make sure that /home/openrd/fc8.release.x11.openrd.nand.src/ is created  on 
successful execution of this command. 

 
2. Build JFFS2 file system image. 
 

# mkfs.jffs2 –l –n --pad –e 0x20000 –r /home/openrd/fc8.release.x11.openrd.nand.src/ –o 
fc8.release.x11.openrd.nand.jffs2  

  

3.3.2  Building UBI file system image 
 Pre-requisites 
 

a. On the linux host, copy fc8.release.x11.openrd.nand.src.tar.gz to /home/openrd.   This 
can be obtained from the CD/DVD, which is shipped along with the OpenRD-Client unit. 
 
Path of file system in CD/DVD:  

  openrd-devkit-v1.0/openrd_filesystem/source/fc8.release.x11.openrd.nand.src.tar.gz 
 
b. Obtain mtd-utils v1.2.0 from http://git.infradead.org/?p=mtd-utils.git;a=summary and 

install lzo2 library from http://www.oberhumer.com/opensource/lzo/  
  
 Following steps need to be followed for installing ubifs-tools using mtd-utils 
  
 /home/openrd # tar zxvf mtd-utils.tar.gz 
 
 /home/openrd # cd mtd-utils/mkfs.ubifs 
 
 /home/openrd/mtd-utils/mkfs.ubifs # make 
 
 /home/openrd/mtd-utils/mkfs.ubifs # make install 
 
 /home/openrd/mtd-utils/mkfs.ubifs # cd ../ubi-utils/ 
 



 

 
      

 

OpenRD-Client - Marvell® 88F6281 based Reference Design 

Designed for Marvell® by eInfochips 

Page 20 of 76 

 /home/openrd/mtd-utils/ubi-utils # make 
 
 /home/openrd/mtd-utils/ubi-utils # make install 
 
 /home/openrd/mtd-utils/ubi-utils # cd ../.. 
 
 /home/openrd # rm –rf mtd-utils 
 
 OR 
 
 Refer Appendix F to install pre-compiled mtd-utils binaries. 
 
1. Extract Fedora Core 8 release file system source (Note: run this command with root 

user; ignore step, if file system source is already extracted) 
  
 # cd /home/openrd 
 /home/openrd # tar zxvf fc8.release.x11.openrd.nand.src.tar.gz 
 
 Make sure that /home/openrd/fc8.release.x11.openrd.nand.src/ is created  on 
 successful execution of this command, 
 

2. Create shell script named make_ubifs.sh with following content in /home/openrd 
directory: 

 
#!/bin/sh 
 
PWD=`pwd` 
TARGET_DIR=${PWD} 
ROOTFS=${PWD}/fc8.release.x11.openrd.nand.src/ 
UBIFS_IMG=${TARGET_DIR}/fc8.release.x11.openrd.nand.ubifs.img 
UBINIZECFG=${TARGET_DIR}/ubinize.cfg 
UBI_IMG=${TARGET_DIR}/fc8.release.x11.openrd.nand.ubi.img 
SUBPAGE_SIZE=2048 
 
rm ${UBI_IMG} 
rm ${UBIFS_IMG} 
rm ${UBINIZECFG} 
 
mkfs.ubifs -g 1 -v -r ${ROOTFS} -m 2KiB -e 124KiB -c 4000 -o ${UBIFS_IMG} -x zlib 
touch ${UBINIZECFG} 
echo " 
[ubifs] 
mode=ubi 
image=${UBIFS_IMG} 
vol_id=0 
vol_size=480MiB 
vol_type=dynamic 
vol_name=rootfs 
vol_flags=autoresize 
" > ${UBINIZECFG} 
 
cat ${UBINIZECFG} 
 
ls -lh ${UBIFS_IMG} 
 
ubinize -v -o ${UBI_IMG} -m 2KiB -p 128KiB -s ${SUBPAGE_SIZE} -O 
${SUBPAGE_SIZE} ${UBINIZECFG} 



 

 
      

 

OpenRD-Client - Marvell® 88F6281 based Reference Design 

Designed for Marvell® by eInfochips 

Page 21 of 76 

 
rm ${UBINIZECFG} 
rm ${UBIFS_IMG} 

 
3. Building UBIFS image 

 
 # chmod 755 ./make_ubifs.sh 

# sh ./make_ubifs.sh  
 
On successful execution of above command, fc8.release.x11.openrd.nand.ubi.img file will 
be created in /home/openrd.  This is UBIFS to be flashed on NAND.  



 

 
      

 

OpenRD-Client - Marvell® 88F6281 based Reference Design 

Designed for Marvell® by eInfochips 

Page 22 of 76 

4. Writing OpenRD Software to NAND flash 
 
Pre-requisites 
 
Following images are used in the procedures described below:  
 

1. u-boot.bin.openrd – u-boot for OpenRD (obtain from <dvd-home>/openrd-devkit-
v1.0/openrd_uboot/binary/) 

2. uImage.openrd – Compressed Linux kernel for OpenRD (obtain from <dvd-
home>/openrd-devkit-v1.0/openrd_lsp/binary/) 

3. fc8.release.x11.openrd.nand.jffs2 – Fedora Core 8 file system for OpenRD (obtain from 
<dvd-home>/openrd-devkit-v1.0/openrd_filesystem/binary/) 

4. fc8.release.x11.openrd.nand.ubi.img – Fedora Core 8 file system for OpenRD (obtain 
from <dvd-home>/openrd-devkit-v1.0/openrd_filesystem) 

5. Make sure to setup NFS root file system as per Appendix E. 
6. Make sure to setup TFTP server as per Appendix B. 

 

4.1 Writing U-boot 
Pre-requisites 
 
Obtain OpenOCD for OpenRD from DVD.  Path for openocd.binaries.libftdi.tar.gz package is 
<dvd-home>/openrd-devkit-v1.0/openrd_openocd/binary/. 
 
OpenRD board (client/base) connected to PC/Host with FTDI programmed for Channel A as CPU 
FIFO. 
 
Steps 
 
/home/openrd # tar zxvf openocd.binaries.libftdi.tar.gz  

/home/openrd # cd openocd.binaries.libftdi/bin 

/home/openrd/openocd.binaries.libftdi/bin # cp /home/openrd/u-boot-1.1.4/u-boot uboot.elf 

/home/openrd/openocd.binaries.libftdi/bin # cp /home/openrd/u-boot-1.1.4/u-boot-

OpenRD88f6281a_400rd_nand.bin uboot.bin 

 
Give power cycle on OpenRD board before executing following command: 
 

/home/openrd/openocd.binaries.libftdi/bin # ./openocd –f target/board/openrd.cfg –c init -c 

openrd_reflash_uboot 

 
Notes:  
 

1. Above command must be executed using root privilege.  Execution of this command may 
take between 46-200 seconds. 

 
2. After receiving following message using openocd, press Ctrl+C to quit; reset OpenRD 

manually using SW2 switch or power cycle. Remove USB mini B connector from 
OpenRD-Client board and again connect it. 

 
NAND flash device 'NAND 512MiB 3,3V 8-bit' found 



 

 
      

 

OpenRD-Client - Marvell® 88F6281 based Reference Design 

Designed for Marvell® by eInfochips 

Page 23 of 76 

successfully erased blocks 0 to 4 on NAND flash device 'NAND 
512MiB 3,3V 8-bit' 
wrote file uboot.bin to NAND flash 0 up to offset 0x00073000 in 
42.612942s 
Info:   JTAG tap: feroceon.cpu tap/device found: 0x20a023d3 
(Manufacturer: 0x1e9, Part: 0x0a02, Version: 0x2) 
Info:   JTAG Tap/device matched 

 
3. Sample output of above command: 

 
  /home/openrd/openocd.binaries.libftdi/bin # openocd -f target/board/openrd.cfg -c init -c  

  openrd_reflash_uboot 
 Open On-Chip Debugger 1.0 (2009-02-27-10:14) svn:unknown 
 
 
 BUGS? Read http://svn.berlios.de/svnroot/repos/openocd/trunk/BUGS 
 
 

$URL$ 
jtag_speed: 1 
dcc downloads are enabled 
Info:   JTAG tap: feroceon.cpu tap/device found: 0x20a023d3 
(Manufacturer: 0x1e9, Part: 0x0a02, Version: 0x2) 
Info:   JTAG Tap/device matched 
Error:  unknown EmbeddedICE version (comms ctrl: 0x00000018) 
Warning:no telnet port specified, using default port 4444 
Warning:no gdb port specified, using default port 3333 
Warning:no tcl port specified, using default port 6666 
target state: halted 
target halted in ARM state due to debug-request, current mode: 
Supervisor 
cpsr: 0x000000d3 pc: 0xffff0000 
MMU: disabled, D-Cache: disabled, I-Cache: disabled 
0 0 1 0: 00052078 
NAND flash device 'NAND 512MiB 3,3V 8-bit' found 
successfully erased blocks 0 to 4 on NAND flash device 'NAND 
512MiB 3,3V 
8-bit' 
wrote file uboot.bin to NAND flash 0 up to offset 0x00073000 in 
42.612942s 
Info:   JTAG tap: feroceon.cpu tap/device found: 0x20a023d3 
(Manufacturer: 0x1e9, Part: 0x0a02, Version: 0x2) 
Info:   JTAG Tap/device matched 
 

4.2 Writing Linux Kernel 
This section shows the steps to write Linux Kernel onto the NAND flash on the KW-6281(A0) 
based OpenRD board.  On the console of the debug board follow the steps below to write the 
image to the NAND flash. Initially boot the debug board from NFS location where uImage and 
jffs2 images are stored. 
 
uImage.openrd can be obtained from <dvd-home>/openrd-devkit-v1.0/openrd_lsp/binary/ from 
DVD provided with OpenRD.  Or, user may build uImage using source code provided on DVD at 
<dvd-home>/openrd-devkit-v1.0/openrd_lsp/source/. 
 
Note: Following instructions stand valid only if used with NFS Root File System provided 
with OpenRD release 



 

 
      

 

OpenRD-Client - Marvell® 88F6281 based Reference Design 

Designed for Marvell® by eInfochips 

Page 24 of 76 

 
 

1. At the Linux prompt, check for the NAND flash partition. You should see 2 partitions after 
issuing the command below.  
 
-sh-3.2# cat /proc/mtd 
dev:    size          erasesize  name 
mtd0: 00400000 00020000 "uImage" 
mtd1: 1fb00000 00020000 "rootfs" 
 
2. Confirm that the NAND erase and write binaries are included. These should be found in the 
‘usr/sbin’ directory on giving the commands below.   
 
-sh-3.2# find . -name flash_eraseall  
-sh-3.2# find . -name nandwrite  
  
3. Erase Linux Kernel partition on the NAND.  
 
-sh-3.2# flash_eraseall -j  /dev/mtd0 
Erasing 128 Kibyte @ 3e0000 -- 96 % complete. Cleanmarker written at 3e0000. 
 
4. Write Linux Kernel to NAND 
 
-sh-3.2# nandwrite –p   /dev/mtd0 uImage.openrd 
Writing data to block 0 
Writing data to block 20000 
Writing data to block 40000 
Writing data to block 60000 
Writing data to block 80000 
Writing data to block a0000 
Writing data to block c0000 
Writing data to block e0000 
Writing data to block 100000 
Writing data to block 120000 
Writing data to block 140000 
Writing data to block 160000 
Writing data to block 180000 
Writing data to block 1a0000 
Writing data to block 1c0000 
Writing data to block 1e0000 
Writing data to block 200000 
Writing data to block 220000 
Writing data to block 240000 
 

4.3 Writing File Systems 
4.3.1  Writing JFFS2 file system image 
This section shows the steps to copy the Fedora Core 8 file system jffs2 image onto the 
NAND flash on the KW-6281(A0) based OpenRD board. The Fedora Core 8 file system 
can then be updated and various packages can be installed.  
 
On the console of the debug board follow the steps below to write the image to the NAND 
flash. Initially boot the debug board from NFS location where uImage and jffs2 images 
are stored.  
 
fc8.release.x11.openrd.nand.jffs2 can be obtained from <dvd-home>/openrd-devkit-



 

 
      

 

OpenRD-Client - Marvell® 88F6281 based Reference Design 

Designed for Marvell® by eInfochips 

Page 25 of 76 

v1.0/openrd_filesystem/binary/ on DVD shipped with OpenRD. Or, user may generate 
JFFS2 image from source provided on DVD at <dvd-home>/openrd-devkit-
v1.0/openrd_filesystem/source/fc8.release.x11.openrd.nand.src.tar.gz. 
  
Note: Following instructions stand valid only if used with NFS Root File System 
provided with OpenRD release 
 
1. At the Linux prompt, check for the NAND flash partition. You should see 2 partitions 
after issuing the command below.  
 
-sh-3.2# cat /proc/mtd 
dev:    size          erasesize  name 
mtd0: 00400000 00020000 "uImage" 
mtd1: 1fb00000 00020000 "rootfs" 
  
2. Confirm that the NAND erase and write binaries are included. These should be found 
in the ‘usr/sbin’ directory on giving the commands below.   
 
-sh-3.2# find . -name flash_eraseall  
-sh-3.2# find . -name nandwrite  
  
3. Erase file system partition on the NAND.  
 
-sh-3.2# flash_eraseall -j  /dev/mtd1 
Erasing 128 Kibyte @ 15300000 -- 66 % complete. Cleanmarker written at 15300000.8 
Kibyte @ f800000 -- 48 % complete. Cleanma.Skipping bad block at 0x15320000 
Erasing 128 Kibyte @ 1b240000 -- 85 % complete. Cleanmarker written at 1b240000. 
Skipping bad block at 0x1b260000 
Erasing 128 Kibyte @ 1d7a0000 -- 93 % complete. Cleanmarker written at 1d7a0000. 
Skipping bad block at 0x1d7c0000 
Erasing 128 Kibyte @ 1fae0000 -- 99 % complete. Cleanmarker written at 1fae0000. 
-sh-3.2# 
 
Here, /dev/mtd1 is configured as rootfs partition using $(console) environment 
variable on u-boot. 
  
5. Write the filesystem jffs2 image onto the NAND flash. Note the number of blocks that 
are used by the data. This is the length of the image that will be needed in the boot 
arguments (similarly you can choose to utilize the NAND flash space up to 506 MB) while 
editing the bootargs command in U-Boot.  
 
-sh-3.2# nandwrite  -p –q /dev/mtd1 fc8.release.x11.openrd.nand.jffs2 
  
Note: This will take some time as the time taken for flashing File system depends 
on size of jffs2 image  
 
6. Create a mount directory and mount the jffs2 image on the NAND flash mtdblock1.  
 
-sh-3.2# mkdir mnt1  
-sh-3.2#   
-sh-3.2#   
-sh-3.2# mount -t jffs2  /dev/mtdblock1  /mnt1 
-sh-3.2# umount /mnt1 
  
7. Restart the system and enter the U-Boot prompt by stopping the auto boot, 



 

 
      

 

OpenRD-Client - Marvell® 88F6281 based Reference Design 

Designed for Marvell® by eInfochips 

Page 26 of 76 

  
8. Booting Linux Kernel, JFFS2 file system from NAND 
 
Following command must be applied at u-boot prompt (Marvell>>) 
 
Marvell>> setenv console 'console=ttyS0,115200 
mtdparts=nand_mtd:0x400000@0x100000(uImage),0x1fb00000@0x500000(rootfs) rw' 
 
Marvell>> setenv bootargs $(console) root=/dev/mtdblock1 fb=xgifb 
 
Marvell>> setenv bootcmd 'nand read.e 0x800000 0x100000 0x400000; bootm 
0x800000' 
 
Marvell>> saveenv 
  

9. Reboot the system and the system should boot from NAND flash.  Login prompt will only 
be received on GUI; i.e. no login prompt will be available on serial console. 
 
Marvell>> reset 
 
10. The login and password to access the prompt are:  
 a. Login – root, Password – nosoup4u  (root can not be used to login using GUI) 
 b. Login – admin, Password - openrd 

 
4.3.2  Writing UBIFS image 
This section shows the steps to copy the Fedora Core 8 file system ubifs image onto the 
NAND flash on the KW-6281(A0) based OpenRD board. The Fedora Core 8 file system 
can then be updated and various packages can be installed.  
 
On the console of the debug board follow the steps below to write the image to the NAND 
flash. Initially boot the debug board from NFS location where uImage and ubifs images 
are stored. 
 
fc8.release.x11.openrd.nand.ubi.img can be obtained from <dvd-home>/openrd-devkit-
v1.0/openrd_filesystem/binary/ on DVD shipped with OpenRD. Or, user may generate 
UBIFS from source provided on DVD at <dvd-home>/openrd-devkit-
v1.0/openrd_filesystem/source/ fc8.release.x11.openrd.nand.src.tar.gz. 
Note: Following instructions stand valid only if used with NFS Root File System provided 
with OpenRD release. 
 
1. At the Linux prompt, check for the NAND flash partition. You should see 2 partitions 
after issuing the command below.  
 
-sh-3.2# cat /proc/mtd 
dev:    size          erasesize  name 
mtd0: 00400000 00020000 "uImage" 
mtd1: 1fb00000 00020000 "rootfs" 
  
2. Confirm that the NAND erase and write binaries are included. These should be found 
in the ‘usr/sbin’ directory on giving the commands below.   
 
-sh-3.2# find . -name flash_eraseall  
-sh-3.2# find . -name nandwrite  
  



 

 
      

 

OpenRD-Client - Marvell® 88F6281 based Reference Design 

Designed for Marvell® by eInfochips 

Page 27 of 76 

3. Erase file system partition on the NAND.  
 
-sh-3.2# flash_eraseall /dev/mtd1  
Erasing 128 Kibyte @ 15300000 -- 66 % complete. Cleanmarker written at 15300000.8 
Kibyte @ f800000 -- 48 % complete. Cleanma.Skipping bad block at 0x15320000 
Erasing 128 Kibyte @ 1b240000 -- 85 % complete. Cleanmarker written at 1b240000. 
Skipping bad block at 0x1b260000 
Erasing 128 Kibyte @ 1d7a0000 -- 93 % complete. Cleanmarker written at 1d7a0000. 
Skipping bad block at 0x1d7c0000 
Erasing 128 Kibyte @ 1fae0000 -- 99 % complete. Cleanmarker written at 1fae0000. 
-sh-3.2# 
 
Here, /dev/mtd1 is configured as rootfs partition using $(console) environment 
variable on u-boot. 
 

1. Write the file system ubifs image onto the NAND. 
 
# ubiformat /dev/mtd1 -f fc8.release.x11.openrd.nand.ubi.img -s 2048 –O 2048 
ubiformat: mtd1 (NAND), size 531628032 bytes (507.0 MiB), 131072 eraseblocks of 
131072 bytes (128.0 KiB), min. I/O size 2048slibscan: scanning eraseblock 4055 -- 100 
% complete 
ubiformat: 4053 eraseblocks are supposedly empty 
ubiformat: bad eraseblocks: 2713, 3475, 3774 
ubiformat: flashing eraseblock 3497 -- 100 % complete 
ubiformat: formatting eraseblock 4055 -- 100 % complete 
-sh-3.2# 
 
Note: This will take some time as the time taken for flashing File system depends 
on size of ubifs image 

 
2. Restart the system and press any key to stop on the U-Boot prompt 

 
# reboot 
 

3. Booting Linux Kernel, UBI file system from NAND 
 
Following command must be applied at u-boot prompt (Marvell>>) 
 
Marvell>> setenv console 'console=ttyS0,115200 
mtdparts=nand_mtd:0x400000@0x100000(uImage),0x1fb00000@0x500000(rootfs) rw' 
 
Marvell>> setenv bootargs $(console) ubi.mtd=1,2048 root=ubi0:rootfs rootfstype=ubifs 
fb=xgifb 
 
Marvell>> setenv bootcmd 'nand read.e 0x800000 0x100000 0x400000; bootm 
0x800000' 
 
Marvell>> saveenv 
 
Note: Be careful while giving “saveenv” command. “saveenv” will save the parameters 
into NAND. From next reboot onwards, board will use the saved environment variables. 
 

4. Reboot the system and the system should boot from NAND flash. 
 
Marvell>> reset 
 
5. The login and password to access the prompt are:  



 

 
      

 

OpenRD-Client - Marvell® 88F6281 based Reference Design 

Designed for Marvell® by eInfochips 

Page 28 of 76 

 a. Login – root, Password – nosoup4u  (root can not be used to login using GUI) 
 b. Login – admin, Password - openrd 



 

 
      

 

OpenRD-Client - Marvell® 88F6281 based Reference Design 

Designed for Marvell® by eInfochips 

Page 29 of 76 

5. On-Board Software 
5.1 Flash Memory Organization 

The NAND Flash memory used for 88F6281 SoC is organized as 262,144 pages by 2112 
x 8 columns and the Spare is organized as 64x8 columns. The write and read operation 
are executed on a page basis, while the erase operation is executed on a block basis. Bit 
erase operation on the NAND Flash device is not supported. Erasable Size is 256KB 
blocks. The 88F6281 SoC internal boot ROM initializes the DDR2 memory according to 
the parameter located in the image extended header running at 0xFFFF0000. It copies 
the U-boot image from the NAND flash into the DRAM at location 0xF0000000 
accordingly to the imager header, which is located on the first page of the NAND flash at 
offset 0. 

 
 

Figure 7 Flash Memory Organization 

5.2 Flash Write Access 
The flash mapping for the image layout as follows: 

 
Figure 8 Flash Write Access 

 
The boot software a.k.a. U-Boot starts at the reset after it asserted low for 20 ms, and then 
the POR circuit is triggered. The SysRSTn stays asserted for additional 300us after the 



 

 
      

 

OpenRD-Client - Marvell® 88F6281 based Reference Design 

Designed for Marvell® by eInfochips 

Page 30 of 76 

power and clocks are stable. The NAND flash performs a boot sequence during the additional 
300us time to prepare page 0 ready to be read, upon completing the above sequence, the 
internal CPU reset is de-asserted, and CPU starts to execute boot code form the NAND 
device. When the reset button is pressed, the POR circuit is triggered and the whole process 
is started all over again. 
 
Since the OpenRD-Client board is booting from NAND Flash device, there are no optional 
strapping pin to support booting from other devices. 
The boot sequence upon power on reset is as follows: 
 

• U-Boot image is resided in the NAND FLASH – page 0 
• CPU jumps to reset vector at 0xFFFF0000 
• CPU executed vector code at 0xFFF90000 
• CPU internal boot loader initializes register 0xF1000000 
• CPU internal boot loader initializes register DDRAM 0xF0000000 
• CPU internal boot loader copied Flash image from 0xF0000000 to DRAM 

location 0xFFF90000 
• CPU running codes from 0XFFF90000 location 
• CPU performed system POST and display U-Boot prompt 

 

5.3 Functional Test Software 
The functional Test SW is part of the boot software that allows testing of the 88F6281 SoC 
device. From U-Boot Monitor mode, commands are extended with extra functionality, which 
can be useful for running diagnostic and benchmarks. There are two types of Functional Test 
Software; POST and manufacturing diagnostic test.  POST testing is expected to be an 
application on top of Boot loader performing sanity checks to ensure that peripherals critical 
to OpenRD-Client are checked every time platform is powered on. Manufacturing Diagnostics 
is expected to be application on top of Boot loader performing functional checks to ensure 
that peripherals on OpenRD-Client are usable postproduction; such diagnostics will help 
contract manufacturer to perform quality control on OpenRD-Client at the time of production 
from functional standpoints using software. Prior to loading Boot loader, contract 
manufacturer shall perform power supply checks as well as JTAG tests to the extent 
possible. In addition, contract manufacturer will have to populate OpenRD-Client as per HW 
assembly guidelines and connect peripheral connectors essential for Manufacturing 
Diagnostics tests. POST flow chart test is illustrated as follows: 
 
U-boot source code has both – POST and Manufacturing Diagnostics implemented.  To turn 
off, manufacturing diagnostics set run_diag environment variable to “no” on u-boot prompt as 
follows: 
 
Steps to turn off Manufacturing Diagnostics 
 
Marvell>> setenv run_diag no 
Marvell>> saveenv 
 
Steps to turn on Manufacturing Diagnostics 
 
Marvell>> setenv run_diag yes 
Marvell>> saveenv 
 
For successful execution of Manufacturing Diagnostics, UART loopback connector 
must be connected on UART1 connector on OpenRD. Once manufacturing diagnostics 
is turned off in u-boot, during every boot up, POST will be carried out. 



 

 
      

 

OpenRD-Client - Marvell® 88F6281 based Reference Design 

Designed for Marvell® by eInfochips 

Page 31 of 76 

 
 
 

 
 

  Figure 9 Functional Test Software  
 
POST test will perform following checks: 

• DDR2 Tests (data bus test, address bus test)  

• NAND Tests (nand detection test, nand bad block detection test) 

• UART1 Tests (UART1 internal loopback test) 

• RTC (RTC date/time test) 

• GbE Test (GbE link detection test) 

 

GbE Test 

POST entry point in 
U-boot 

U-boot low level 
initialization 

Power On 

DDR2 Tests 

UART1 Tests 

NAND Tests 

RTC Test 

Control back to U-
boot 

Print Error 
Message 

Test PASS 

Test PASS 

Test PASS 

Test PASS 

Test PASS 

Test FAIL 

Print Error 
Message 

Print Error 
Message 

Print Error 
Message 

Test FAIL 

Test FAIL 

Test FAIL 

Test FAIL 



 

 
      

 

OpenRD-Client - Marvell® 88F6281 based Reference Design 

Designed for Marvell® by eInfochips 

Page 32 of 76 

5.4 Manufacturing Diagnostics Screen Mockup (Success case) 
                  __  __                      _ _ 

        |  \/  | __ _ _ ____   _____| | | 
        | |\/| |/ _` | '__\ \ / / _ \ | | 
        | |  | | (_| | |   \ V /  __/ | | 
        |_|  |_|\__,_|_|    \_/ \___|_|_| 
 _   _     ____              _ 
| | | |   | __ )  ___   ___ | |_ 
| | | |___|  _ \ / _ \ / _ \| __| 
| |_| |___| |_) | (_) | (_) | |_ 
 \___/    |____/ \___/ \___/ \__| 
 ** MARVELL BOARD: OpenRD-Client LE 
 
U-Boot 1.1.4 (Apr 24 2009 - 13:56:42) Marvell version: 3.4.16 
 
U-Boot code: 00600000 -> 0067FFF0  BSS: -> 006CEE80 
 
Soc: 88F6281 A0 (DDR2) 
CPU running @ 1200Mhz L2 running @ 400Mhz 
SysClock = 400Mhz , TClock = 200Mhz 
 
DRAM CAS Latency = 5 tRP = 5 tRAS = 18 tRCD=6 
DRAM CS[0] base 0x00000000   size 256MB 
DRAM CS[1] base 0x10000000   size 256MB 
DRAM Total size 512MB  16bit width 
Flash:  0 kB 
Addresses 8M - 0M are saved for the U-Boot usage. 
Mem malloc Initialization (8M - 7M): Done 
NAND:512 MB 
 
Checking for BootROM Routine Errors 
 
No. of BootROM routine retries: 8 
NAND: Nand ECC error 
 
 
Running diagnostics ... 
 

DDR2 data bus test                               PASSED 
 
DDR2 address bus test                            PASSED 
 
DDR2 device test                                 PASSED 
 
UART 1 internal loopback test on baudrate   9600 PASSED 
UART 1 internal loopback test on baudrate  19200 PASSED 
UART 1 internal loopback test on baudrate 115200 PASSED 
 
UART 1 external loopback test on baudrate   9600 PASSED 
UART 1 external loopback test on baudrate  19200 PASSED 
UART 1 external loopback test on baudrate 115200 PASSED 

 
Device: 0, Size: 512 MB, Page Size: 2 KB, Block Size: 128 KB 
NAND detection test                              PASSED 

 
Bad Block: 15820000 
Bad Block: 1b760000 
Bad Block: 1dcc0000 



 

 
      

 

OpenRD-Client - Marvell® 88F6281 based Reference Design 

Designed for Marvell® by eInfochips 

Page 33 of 76 

NAND bad-block detection test                    PASSED 
 
Speed: 1000 Mbps, Duplex: Full, Link: up 
GbE0 link detect test                            PASSED 
 
Speed: 1000 Mbps, Duplex: Full, Link: up 
GbE1 link detect test                            PASSED 
 
RTC test                                         PASSED 

 
Diag completed 
 
CPU : Marvell Feroceon (Rev 1) 
 
Streaming disabled 
Write allocate disabled 
 
Module 0 is AUDIO 
Module 1 is RGMII 
 
USB 0: host mode 
PCI 0: PCI Express Root Complex Interface 
PEX interface detected Link X1 
Net:   egiga0 [PRIME], egiga1 
Hit any key to stop autoboot:  0 
Marvell>> 

 
5.5 Manufacturing Diagnostics Screen Mockup (Failure case) 
    __  __                      _ _ 
        |  \/  | __ _ _ ____   _____| | | 
        | |\/| |/ _` | '__\ \ / / _ \ | | 
        | |  | | (_| | |   \ V /  __/ | | 
        |_|  |_|\__,_|_|    \_/ \___|_|_| 
 _   _     ____              _ 
| | | |   | __ )  ___   ___ | |_ 
| | | |___|  _ \ / _ \ / _ \| __| 
| |_| |___| |_) | (_) | (_) | |_ 
 \___/    |____/ \___/ \___/ \__| 
 ** MARVELL BOARD: OpenRD-Client LE 
 
U-Boot 1.1.4 (Apr 24 2009 - 13:56:42) Marvell version: 3.4.16 
 
U-Boot code: 00600000 -> 0067FFF0  BSS: -> 006CEE80 
 
Soc: 88F6281 A0 (DDR2) 
CPU running @ 1200Mhz L2 running @ 400Mhz 
SysClock = 400Mhz , TClock = 200Mhz 
 
DRAM CAS Latency = 5 tRP = 5 tRAS = 18 tRCD=6 
DRAM CS[0] base 0x00000000   size 256MB 
DRAM CS[1] base 0x10000000   size 256MB 
DRAM Total size 512MB  16bit width 
Flash:  0 kB 
Addresses 8M - 0M are saved for the U-Boot usage. 
Mem malloc Initialization (8M - 7M): Done 
NAND:512 MB 
 



 

 
      

 

OpenRD-Client - Marvell® 88F6281 based Reference Design 

Designed for Marvell® by eInfochips 

Page 34 of 76 

Checking for BootROM Routine Errors 
 
No. of BootROM routine retries: 8 
NAND: Nand ECC error 
 
 
Running diagnostics ... 
 
        DDR2 data bus test                               PASSED 
 
        DDR2 address bus test                            PASSED 
 
        DDR2 device test                                 PASSED 
 
        UART 1 internal loopback test on baudrate   9600 PASSED 
        UART 1 internal loopback test on baudrate  19200 PASSED 
        UART 1 internal loopback test on baudrate 115200 PASSED 
 
        UART 1 external loopback test on baudrate   9600 TIMEOUT 
 
Diag FAILED 
 
CPU : Marvell Feroceon (Rev 1) 
 
Streaming disabled 
Write allocate disabled 
 
Module 0 is AUDIO 
Module 1 is RGMII 
 
USB 0: host mode 
PCI 0: PCI Express Root Complex Interface 
PEX interface detected Link X1 
Net:   egiga0 [PRIME], egiga1 
Hit any key to stop autoboot:  0 
Marvell>> 
 

5.6 POST (Power On Self Test) Screen Mockup (Success case) 
 
         __  __                      _ _ 
        |  \/  | __ _ _ ____   _____| | | 
        | |\/| |/ _` | '__\ \ / / _ \ | | 
        | |  | | (_| | |   \ V /  __/ | | 
        |_|  |_|\__,_|_|    \_/ \___|_|_| 
 _   _     ____              _ 
| | | |   | __ )  ___   ___ | |_ 
| | | |___|  _ \ / _ \ / _ \| __| 
| |_| |___| |_) | (_) | (_) | |_ 
 \___/    |____/ \___/ \___/ \__| 
 ** MARVELL BOARD: OpenRD-Client LE 
 
U-Boot 1.1.4 (Apr 24 2009 - 13:56:42) Marvell version: 3.4.16 
 
U-Boot code: 00600000 -> 0067FFF0  BSS: -> 006CEE80 
 
Soc: 88F6281 A0 (DDR2) 
CPU running @ 1200Mhz L2 running @ 400Mhz 



 

 
      

 

OpenRD-Client - Marvell® 88F6281 based Reference Design 

Designed for Marvell® by eInfochips 

Page 35 of 76 

SysClock = 400Mhz , TClock = 200Mhz 
 
DRAM CAS Latency = 5 tRP = 5 tRAS = 18 tRCD=6 
DRAM CS[0] base 0x00000000   size 256MB 
DRAM CS[1] base 0x10000000   size 256MB 
DRAM Total size 512MB  16bit width 
Flash:  0 kB 
Addresses 8M - 0M are saved for the U-Boot usage. 
Mem malloc Initialization (8M - 7M): Done 
NAND:512 MB 
 
Checking for BootROM Routine Errors 
 
No. of BootROM routine retries: 8 
NAND: Nand ECC error 
 
Running POST... 
 
        DDR2 data bus test                               PASSED 
 
        DDR2 address bus test                            PASSED 
 
        UART 1 internal loopback test on baudrate   9600 PASSED 
        UART 1 internal loopback test on baudrate  19200 PASSED 
        UART 1 internal loopback test on baudrate 115200 PASSED 
 
        Device: 0, Size: 512 MB, Page Size: 2 KB, Block Size: 128 KB 
        NAND detection test                              PASSED 
 
        Bad Block: 15820000 
        Bad Block: 1b760000 
        Bad Block: 1dcc0000 
        NAND bad-block detection test                    PASSED 
 
        RTC test                                         PASSED 
 
6/6 tests PASSED 
POST completed 
 
CPU : Marvell Feroceon (Rev 1) 
 
Streaming disabled 
Write allocate disabled 
 
Module 0 is AUDIO 
Module 1 is RGMII 
 
USB 0: host mode 
PCI 0: PCI Express Root Complex Interface 
PEX interface detected Link X1 
Net:   egiga0 [PRIME], egiga1 
Hit any key to stop autoboot:  0 
Marvell>> 
 
 
 
 



 

 
      

 

OpenRD-Client - Marvell® 88F6281 based Reference Design 

Designed for Marvell® by eInfochips 

Page 36 of 76 

5.7 POST (Power On Self Test) Screen Mockup (Failure case) 
    __  __                      _ _ 
        |  \/  | __ _ _ ____   _____| | | 
        | |\/| |/ _` | '__\ \ / / _ \ | | 
        | |  | | (_| | |   \ V /  __/ | | 
        |_|  |_|\__,_|_|    \_/ \___|_|_| 
 _   _     ____              _ 
| | | |   | __ )  ___   ___ | |_ 
| | | |___|  _ \ / _ \ / _ \| __| 
| |_| |___| |_) | (_) | (_) | |_ 
 \___/    |____/ \___/ \___/ \__| 
 ** MARVELL BOARD: OpenRD-Client LE 
 
U-Boot 1.1.4 (Apr 24 2009 - 13:56:42) Marvell version: 3.4.16 
 
U-Boot code: 00600000 -> 0067FFF0  BSS: -> 006CEE80 
 
Soc: 88F6281 A0 (DDR2) 
CPU running @ 1200Mhz L2 running @ 400Mhz 
SysClock = 400Mhz , TClock = 200Mhz 
 
DRAM CAS Latency = 5 tRP = 5 tRAS = 18 tRCD=6 
DRAM CS[0] base 0x00000000   size 256MB 
DRAM CS[1] base 0x10000000   size 256MB 
DRAM Total size 512MB  16bit width 
Flash:  0 kB 
Addresses 8M - 0M are saved for the U-Boot usage. 
Mem malloc Initialization (8M - 7M): Done 
NAND:512 MB 
 
Checking for BootROM Routine Errors 
 
No. of BootROM routine retries: 8 
NAND: Nand ECC error 
 
Running POST... 
 
        DDR2 data bus test                               PASSED 
 
        DDR2 address bus test                            PASSED 
 
        UART 1 internal loopback test on baudrate   9600 PASSED 
        UART 1 internal loopback test on baudrate  19200 PASSED 
        UART 1 internal loopback test on baudrate 115200 PASSED 
 
        Device: 0, Size: 512 MB, Page Size: 2 KB, Block Size: 128 KB 
        NAND detection test                              PASSED 
 
        Bad Block: 15820000 
        Bad Block: 1b760000 
        Bad Block: 1dcc0000 
        NAND bad-block detection test                    PASSED 
 
        RTC test                                         FAILED 
 
5/6 tests PASSED 
POST completed 
 



 

 
      

 

OpenRD-Client - Marvell® 88F6281 based Reference Design 

Designed for Marvell® by eInfochips 

Page 37 of 76 

CPU : Marvell Feroceon (Rev 1) 
 
Streaming disabled 
Write allocate disabled 
 
Module 0 is AUDIO 
Module 1 is RGMII 
 
USB 0: host mode 
PCI 0: PCI Express Root Complex Interface 
PEX interface detected Link X1 
Net:   egiga0 [PRIME], egiga1 
Hit any key to stop autoboot:  0 
Marvell>> 
 
In addition to running Manufacturing Diagnostics or POST during boot up; it’s also possible to run 
these test using U-boot command line as follows: 

Command syntax: 

Marvell>> mv_diag <testname> 

 
Sample output: 
 
Marvell>> mv_diag 
Available tests are: 
 data_bus 
 addr_bus 
 device 
 uart_int 
 uart_ext 
 nand_detect 
 nand_bad_block 
 nand_rw 
 gbe_link 
 rtc 

User can run selective tests using command line specified above.  For e.g. to execute rtc test 
using command line: 

Marvell>> mv_diag rtc 
RTC test                                             PASSED 

Marvell>> 
 
 



 

 
      

 

OpenRD-Client - Marvell® 88F6281 based Reference Design 

Designed for Marvell® by eInfochips 

Page 38 of 76 

6. Prepare SATA HDD with Fedora Core 8 ARM File System 
In order to prepare SATA disk with Fedora 8 ARM port File System, please follow below 
mentioned steps: 

Steps 

1. Connect SATA HDD on Linux box with SATA HDD supported and partition it using fdisk 
as follows: 

• First partition (/dev/sda1) of 25GB or more for fedora linux (Ext3, Id:83) 

• Second partition (/dev/sda2) of 1MB for Swap (Swap Id: 82) 

• Third partition (/dev/sda3) of remaining space. 

2. Create ext3 file system on partition 1 and 3.  Create swap on partition 2 

# mkfs.ext3 /dev/sda1 
# mkfs.ext3 /dev/sda3 
# mkswap /dev/sda2 

3. Mount /dev/sda1 to a mount point; for e.g. /mnt 

# mount /dev/sda1 /mnt 

4. Untar “fc8.release.x11.openrd.hdd.tar.gz” on /dev/sda1 using mount point /mnt. This will 
extract Fedora 8 ARM port file system to /mnt 

# cd /mnt 
# tar zxvf <dvd-home>/openrd_filesystem/hdd/fc8.release.x11.openrd.hdd.tar.gz 
 
On successful execution of above commands, connect SATA HDD prepared with Fedora 
Core 8 ARM File System to SATA connector on the bottom side of OpenRD board. 
 

5. Booting Linux Kernel from NAND, FC8 file system from SATA 
 
Following command must be applied at u-boot prompt (Marvell>>) 
 
Marvell>> setenv console 'console=ttyS0,115200 
mtdparts=nand_mtd:0x400000@0x100000(uImage),0x1fb00000@0x500000(rootfs) rw' 
 
Marvell>> setenv bootargs $(console) root=/dev/sda1 fb=xgifb 
 
Marvell>> setenv bootcmd 'nand read.e 0x800000 0x100000 0x400000; bootm 
0x800000' 
 
Marvell>> saveenv 
 



 

 
      

 

OpenRD-Client - Marvell® 88F6281 based Reference Design 

Designed for Marvell® by eInfochips 

Page 39 of 76 

7. Ubuntu 9.04 Jaunty File System 
7.1 Building File Systems 

7.1.1  Building JFFS2 file system image 
 Pre-requisites 
 

b. On the linux host, copy ubuntu-9.04.jaunty.release.x11.openrd.src.tar.gz to 
/home/openrd.   This can be obtained from the CD/DVD, which is shipped along with the 
OpenRD-Client unit. 
 
Path of file system in CD/DVD:  

  openrd-devkit-v1.0/openrd_filesystem-ubuntu/source/ubuntu-
 9.04.jaunty.release.x11.openrd.src.tar.gz 
 
c. Install latest mtd-utils package on Linux host.  If mtd-utils is not installed, following steps 

must be followed for installation. 
  
  Download the rpm for host machine distribution from  

http://rpmfind.net/linux/rpm2html/search.php?query=mtd-utils 
 

After downloading rpm, install it as: 
 
# rpm –ivh <mtd-utils-rpmname>  
 
To check, if you already have mkfs.jffs2 installed or not, use following command: 
 
-sh-3.2# find . -name mkfs.jffs2 
 
OR 
 
For Linux host distributions such as ubuntu, type following command on Linux 
host  (Note: internet connection is required to carry out this step) 

 
# sudo apt-get install mtd-utils 
 
OR 
 
Refer Appendix F to install pre-compiled mtd-utils binaries. 

 
3. Extract ubuntu-9.04 jaunty release file system source (Note: run this command with 

root user) 
  
 # cd /home/openrd 
 /home/openrd # tar zxvf ubuntu-9.04.jaunty.release.openrd.src.tar.gz 
 
 Make sure that /home/openrd/ubuntu-9.04.jaunty.release.x11.openrd.src/ is created 
 on successful execution of this command, 
 

4. Build JFFS2 file system image. 
 
 # mkfs.jffs2 –l –n --pad –e 0x20000 –r /home/openrd/ubuntu- 
 9.04.jaunty.release.x11.openrd.src/ –o ubuntu-9.04.release.x11.openrd.jffs2  
  



 

 
      

 

OpenRD-Client - Marvell® 88F6281 based Reference Design 

Designed for Marvell® by eInfochips 

Page 40 of 76 

7.1.2  Building UBI file system image 
 Pre-requisites 
 

b. On the linux host, copy ubuntu-9.04.jaunty.release.x11.openrd.src.tar.gz to 
/home/openrd.   This can be obtained from the CD/DVD, which is shipped along with the 
OpenRD-Client unit. 
 
Path of file system in CD/DVD:  

  openrd-devkit-v1.0/openrd_filesystem-ubuntu/source/ubuntu-
 9.04.jaunty.release.x11.openrd.src.tar.gz 
 
c. Obtain mtd-utils v1.2.0 from http://git.infradead.org/?p=mtd-utils.git;a=summary and 

install lzo2 library from http://www.oberhumer.com/opensource/lzo/  
  
 Following steps need to be followed for installing ubifs-tools using mtd-utils 
  
 /home/openrd # tar zxvf mtd-utils.tar.gz 
 
 /home/openrd # cd mtd-utils/mkfs.ubifs 
 
 /home/openrd/mtd-utils/mkfs.ubifs # make 
 
 /home/openrd/mtd-utils/mkfs.ubifs # make install 
 
 /home/openrd/mtd-utils/mkfs.ubifs # cd ../ubi-utils/ 
 
 /home/openrd/mtd-utils/ubi-utils # make 
 
 /home/openrd/mtd-utils/ubi-utils # make install 
 
 /home/openrd/mtd-utils/ubi-utils # cd ../.. 
 
 /home/openrd # rm –rf mtd-utils 
 
 OR 
 
 Refer Appendix F to install pre-compiled mtd-utils binaries. 
 
4. Extract ubuntu-9.04 jaunty release file system source (Note: run this command with 

root user; ignore step, if file system source is already extracted) 
  
 # cd /home/openrd 
 /home/openrd # tar zxvf ubuntu-9.04.jaunty.release.x11.openrd.src.tar.gz 
 
 Make sure that /home/openrd/ ubuntu-9.04.jaunty.release.x11.openrd.src/ is created 
 on successful execution of this command, 
 

5. Create shell script named make_ubifs.sh with following content in /home/openrd 
directory: 

 
#!/bin/sh 
 
PWD=`pwd` 
TARGET_DIR=${PWD} 
ROOTFS=${PWD}/ubuntu-9.04.jaunty.release.x11.openrd.src/ 
UBIFS_IMG=${TARGET_DIR}/ubuntu-9.04.jaunty.release.x11.openrd.ubifs.img 
UBINIZECFG=${TARGET_DIR}/ubinize.cfg 



 

 
      

 

OpenRD-Client - Marvell® 88F6281 based Reference Design 

Designed for Marvell® by eInfochips 

Page 41 of 76 

UBI_IMG=${TARGET_DIR}/ubuntu-9.04.jaunty.release.x11.openrd.ubi.img 
SUBPAGE_SIZE=2048 
 
rm ${UBI_IMG} 
rm ${UBIFS_IMG} 
rm ${UBINIZECFG} 
 
mkfs.ubifs -g 1 -v -r ${ROOTFS} -m 2KiB -e 124KiB -c 4000 -o ${UBIFS_IMG} -x zlib 
touch ${UBINIZECFG} 
echo " 
[ubifs] 
mode=ubi 
image=${UBIFS_IMG} 
vol_id=0 
vol_size=480MiB 
vol_type=dynamic 
vol_name=rootfs 
vol_flags=autoresize 
" > ${UBINIZECFG} 
 
cat ${UBINIZECFG} 
 
ls -lh ${UBIFS_IMG} 
 
ubinize -v -o ${UBI_IMG} -m 2KiB -p 128KiB -s ${SUBPAGE_SIZE} -O 
${SUBPAGE_SIZE} ${UBINIZECFG} 
 
rm ${UBINIZECFG} 
rm ${UBIFS_IMG} 

 
6. Building UBIFS image 

 
 # chmod 755 ./make_ubifs.sh 

# sh ./make_ubifs.sh  
 
On successful execution of above command, ubuntu-
9.04.jaunty.release.x11.openrd.ubi.img file will be created in /home/openrd.  This is 
UBIFS to be flashed on NAND.  

7.2 Writing File Systems 
7.2.1  Writing JFFS2 file system image 
This section shows the steps to copy the jaunty file system jffs2 image onto the NAND 
flash on the KW-6281(A0) based OpenRD board. The jaunty file system can then be 
updated and various packages can be installed. Packages are installed in the Ubuntu 
based jaunty file system using ‘apt-get’ command. Snippets of the logs of installed 
packages are shown in Appendix G.  
 
On the console of the debug board follow the steps below to write the image to the NAND 
flash. Initially boot the debug board from NFS location where uImage and jffs2 images 
are stored.  
 
ubuntu-9.04.jaunty.release.x11.openrd.jffs2 can be obtained from <dvd-home>/openrd-
devkit-v1.0/openrd_filesystem-ubuntu/binary/ on DVD shipped with OpenRD. Or, user 
may generate JFFS2 image from source provided on DVD at <dvd-home>/openrd-devkit-
v1.0/openrd_filesystem-ubuntu/source/ubuntu-9.04.jaunty.release.x11.openrd.src.tar.gz. 
  



 

 
      

 

OpenRD-Client - Marvell® 88F6281 based Reference Design 

Designed for Marvell® by eInfochips 

Page 42 of 76 

Note: Following instructions stand valid only if used with NFS Root File System 
provided with OpenRD release 
 
1. At the Linux prompt, check for the NAND flash partition. You should see 2 partitions 
after issuing the command below.  
 
-sh-3.2# cat /proc/mtd 
dev:    size          erasesize  name 
mtd0: 00400000 00020000 "uImage" 
mtd1: 1fb00000 00020000 "rootfs" 
  
2. Confirm that the NAND erase and write binaries are included. These should be found 
in the ‘usr/sbin’ directory on giving the commands below.   
 
-sh-3.2# find . -name flash_eraseall  
-sh-3.2# find . -name nandwrite  
  
3. Erase file system partition on the NAND.  
 
-sh-3.2# flash_eraseall -j  /dev/mtd1 
Erasing 128 Kibyte @ 15300000 -- 66 % complete. Cleanmarker written at 15300000.8 
Kibyte @ f800000 -- 48 % complete. Cleanma.Skipping bad block at 0x15320000 
Erasing 128 Kibyte @ 1b240000 -- 85 % complete. Cleanmarker written at 1b240000. 
Skipping bad block at 0x1b260000 
Erasing 128 Kibyte @ 1d7a0000 -- 93 % complete. Cleanmarker written at 1d7a0000. 
Skipping bad block at 0x1d7c0000 
Erasing 128 Kibyte @ 1fae0000 -- 99 % complete. Cleanmarker written at 1fae0000. 
-sh-3.2# 
 
Here, /dev/mtd1 is configured as rootfs partition using $(console) environment 
variable on u-boot. 
  
5. Write the filesystem jffs2 image onto the NAND flash. Note the number of blocks that 
are used by the data. This is the length of the image that will be needed in the boot 
arguments (similarly you can choose to utilize the NAND flash space up to 506 MB) while 
editing the bootargs command in U-Boot.  
 
-sh-3.2# nandwrite  -p –q /dev/mtd1 ubuntu-9.04.jaunty.release.x11.openrd.jffs2 
  
Note: This will take some time as the time taken for flashing File system depends 
on size of jffs2 image  
 
6. Create a mount directory and mount the jffs2 image on the NAND flash mtdblock1.  
 
-sh-3.2# mkdir mnt1  
-sh-3.2#   
-sh-3.2#   
-sh-3.2# mount -t jffs2  /dev/mtdblock1  /mnt1 
-sh-3.2# umount /mnt1 
  
7. Restart the system and enter the U-Boot prompt by stopping the auto boot, 
  
8. Booting Linux Kernel, JFFS2 file system from NAND 
 
Following command must be applied at u-boot prompt (Marvell>>) 



 

 
      

 

OpenRD-Client - Marvell® 88F6281 based Reference Design 

Designed for Marvell® by eInfochips 

Page 43 of 76 

 
Marvell>> setenv console 'console=ttyS0,115200 
mtdparts=nand_mtd:0x400000@0x100000(uImage),0x1fb00000@0x500000(rootfs) rw' 
 
Marvell>> setenv bootargs $(console) root=/dev/mtdblock1 fb=xgifb 
 
Marvell>> setenv bootcmd 'nand read.e 0x800000 0x100000 0x400000; bootm 
0x800000' 
 
Marvell>> saveenv 
  

9. Reboot the system and the system should boot from NAND flash.  Login prompt will only 
be received on GUI; i.e. no login prompt will be available on serial console. 
 
Marvell>> reset 
 
10. The login and password to access the prompt are:  
 a. Login – root, Password – nosoup4u  (root can not be used to login using GUI) 
 b. Login – admin, Password - openrd 

7.2.2  Writing UBIFS image 
This section shows the steps to copy the jaunty file system ubifs image onto the NAND 
flash on the KW-6281(A0) based OpenRD board. The jaunty file system can then be 
updated and various packages can be installed. Packages are installed in the Ubuntu 
based jaunty file system using ‘apt-get’ command. Snippets of the logs of installed 
packages are shown in Appendix G.  
 
On the console of the debug board follow the steps below to write the image to the NAND 
flash. Initially boot the debug board from NFS location where uImage and ubifs images 
are stored. 
 
ubuntu-9.04.jaunty.release.x11.openrd.ubi.img can be obtained from <dvd-
home>/openrd-devkit-v1.0/openrd_filesystem-ubuntu/binary/ on DVD shipped with 
OpenRD. Or, user may generate UBIFS from source provided on DVD at <dvd-
home>/openrd-devkit-v1.0/openrd_filesystem-ubuntu/source/ubuntu-
9.04.jaunty.release.x11.openrd.src.tar.gz. 
 
Note: Following instructions stand valid only if used with NFS Root File System 
provided with OpenRD release. 
 
1. At the Linux prompt, check for the NAND flash partition. You should see 2 partitions 
after issuing the command below.  
 
-sh-3.2# cat /proc/mtd 
dev:    size          erasesize  name 
mtd0: 00400000 00020000 "uImage" 
mtd1: 1fb00000 00020000 "rootfs" 
  
2. Confirm that the NAND erase and write binaries are included. These should be found 
in the ‘usr/sbin’ directory on giving the commands below.   
 
-sh-3.2# find . -name flash_eraseall  
-sh-3.2# find . -name nandwrite  
  
3. Erase file system partition on the NAND.  
 



 

 
      

 

OpenRD-Client - Marvell® 88F6281 based Reference Design 

Designed for Marvell® by eInfochips 

Page 44 of 76 

-sh-3.2# flash_eraseall /dev/mtd1  
Erasing 128 Kibyte @ 15300000 -- 66 % complete. Cleanmarker written at 15300000.8 
Kibyte @ f800000 -- 48 % complete. Cleanma.Skipping bad block at 0x15320000 
Erasing 128 Kibyte @ 1b240000 -- 85 % complete. Cleanmarker written at 1b240000. 
Skipping bad block at 0x1b260000 
Erasing 128 Kibyte @ 1d7a0000 -- 93 % complete. Cleanmarker written at 1d7a0000. 
Skipping bad block at 0x1d7c0000 
Erasing 128 Kibyte @ 1fae0000 -- 99 % complete. Cleanmarker written at 1fae0000. 
-sh-3.2# 
 
Here, /dev/mtd1 is configured as rootfs partition using $(console) environment 
variable on u-boot. 
 

6. Write the file system ubifs image onto the NAND. 
 
# ubiformat /dev/mtd1 -f ubuntu-9.04.jaunty.release.x11.openrd.ubi.img -s 2048 –O 2048 
ubiformat: mtd1 (NAND), size 531628032 bytes (507.0 MiB), 131072 eraseblocks of 
131072 bytes (128.0 KiB), min. I/O size 2048slibscan: scanning eraseblock 4055 -- 100 
% complete 
ubiformat: 4053 eraseblocks are supposedly empty 
ubiformat: bad eraseblocks: 2713, 3475, 3774 
ubiformat: flashing eraseblock 3497 -- 100 % complete 
ubiformat: formatting eraseblock 4055 -- 100 % complete 
-sh-3.2# 
 
Note: This will take some time as the time taken for flashing File system depends 
on size of ubifs image 

 
7. Restart the system and press any key to stop on the U-Boot prompt 

 
# reboot 
 

8. Booting Linux Kernel, UBI file system from NAND 
 
Following command must be applied at u-boot prompt (Marvell>>) 
 
Marvell>> setenv console 'console=ttyS0,115200 
mtdparts=nand_mtd:0x400000@0x100000(uImage),0x1fb00000@0x500000(rootfs) rw' 
 
Marvell>> setenv bootargs $(console) ubi.mtd=1,2048 root=ubi0:rootfs rootfstype=ubifs 
fb=xgifb 
 
Marvell>> setenv bootcmd 'nand read.e 0x800000 0x100000 0x400000; bootm 
0x800000' 
 
Marvell>> saveenv 
 
Note: Be careful while giving “saveenv” command. “saveenv” will save the parameters 
into NAND. From next reboot onwards, board will use the saved environment variables. 
 

9. Reboot the system and the system should boot from NAND flash. 
 
Marvell>> reset 
 
5. The login and password to access the prompt are:  
 a. Login – root, Password – nosoup4u  (root can not be used to login using GUI) 
 b. Login – admin, Password – openrd 



 

 
      

 

OpenRD-Client - Marvell® 88F6281 based Reference Design 

Designed for Marvell® by eInfochips 

Page 45 of 76 

8. USB Recovery 
 
This document provides the instruction to boot Linux on the OpenRD from U-Boot using a USB 
flash key connected to the USB port on the OpenRD. The provided set of instructions allows the 
burning of the file system on to the NAND flash.  
  
Following images and material are needed to run this process successfully:  
  
Hardware:  
1. USB Flash key with at least 512 MB capacity and ext2 or ext3 filesystem format.  
  
Software:  
1. flashware.img – Flashware image which is a concatenation of the uImage and the minimal 
root filesystem using squashfs format.  
2. uImage.openrd – Latest uImage that can be used to boot up the kernel on the OpenRD.  
3. fc8.release.x11.openrd.nand.ubi.img – Filesystem that is to be burned onto the NAND flash.  
  
All the software images except the filesystem ‘fc8.release.x11.openrd.nand.ubi.img’ have been 
included in the openrd_usb_recovery.zip file. See USB Recovery Sample Log, USB Terms for 
USB Recovery and Building flashware.img sections for more information.  
  
Steps 
  
1. Copy the flashware image (flashware.img), uImage (uImage.openrd) to the USB key. Also, 
copy the file system image (fedora jffs2 or ubifs) to the USB key.  
  
3. Stop the auto-boot to enter the U-Boot prompt. At the U-Boot prompt, set the following 
parameters:  
  
Marvell>> set loadaddr 0x2000000   
 
Marvell>> set mtd1Size 0x400000 (setting mtd1 size to 4MB)  
 
Marvell>> set filesize 0x45DD000 <size of the flashware.img in hex bytes>  
 
Marvell>> saveenv 
 
Marvell>> reset  
  
4. After reset, stop the auto-boot to enter the U-Boot prompt. Connect the USB key, containing 
the flashware.img, uImage.openrd and file system images, to OpenRD board.  
Type the command below:  
  
Marvell>> rcvr  
  
5. OpenRD should then boot up from the flashware.img image in the USB key. The logs of  
the boot-up process are shown in Appendix A.  
  
6. At the Linux prompt, do the following:  
  
-sh-3.2# cat /proc/mtd (This should list all the 2 mtd partitions for the u-boot, uImage and rootfs as 
shown below)  
 



 

 
      

 

OpenRD-Client - Marvell® 88F6281 based Reference Design 

Designed for Marvell® by eInfochips 

Page 46 of 76 

dev:    size          erasesize  name 
mtd0: 00400000 00020000 "uImage" 
mtd1: 1fb00000 00020000 "rootfs" 
  
# fdisk -l  
 
# mount /dev/sda(USB key) /mnt  
 
# cd /mnt  
 
# flash_eraseall /dev/mtd0  
 
# flash_eraseall -j /dev/mtd1  
 
# nandwrite -p /dev/mtd0 uImage.openrd 
 
# ubiformat /dev/mtd1 -f fc8.release.x11.openrd.nand.ubi.img -s 2048 -O 2048 
 
# reboot  
  
7. Again stop the auto-boot and enter the following at the U-Boot prompt:  
  
Marvell>> setenv console 'console=ttyS0,115200 
mtdparts=nand_mtd:0x400000@0x100000(uImage),0x1fb00000@0x500000(rootfs) rw' 
 
Marvell>> setenv bootargs $(console) ubi.mtd=1,2048 root=ubi0:rootfs rootfstype=ubifs fb=xgifb 
 
Marvell>> setenv bootcmd 'nand read.e 0x800000 0x100000 0x400000; bootm 0x800000' 
 
Marvell>> saveenv 
 
8.1 USB Recovery Sample Log 
  
This section provides the log of the successful recovery process of booting Linux from U-Boot  
using the USB flash key.  
  
  __  __                      _ _ 
        |  \/  | __ _ _ ____   _____| | | 
        | |\/| |/ _` | '__\ \ / / _ \ | | 
        | |  | | (_| | |   \ V /  __/ | | 
        |_|  |_|\__,_|_|    \_/ \___|_|_| 
 _   _     ____              _ 
| | | |   | __ )  ___   ___ | |_ 
| | | |___|  _ \ / _ \ / _ \| __| 
| |_| |___| |_) | (_) | (_) | |_ 
 \___/    |____/ \___/ \___/ \__| 
 ** MARVELL BOARD: OpenRD-Client LE 
 
U-Boot 1.1.4 (Apr 22 2009 - 20:18:28) Marvell version: 3.4.16 
 
U-Boot code: 00600000 -> 0067FFF0  BSS: -> 006CEE80 
 
Soc: 88F6281 A0 (DDR2) 
CPU running @ 1200Mhz L2 running @ 400Mhz 
SysClock = 400Mhz , TClock = 200Mhz 



 

 
      

 

OpenRD-Client - Marvell® 88F6281 based Reference Design 

Designed for Marvell® by eInfochips 

Page 47 of 76 

 
DRAM CAS Latency = 5 tRP = 5 tRAS = 18 tRCD=6 
DRAM CS[0] base 0x00000000   size 256MB 
DRAM CS[1] base 0x10000000   size 256MB 
DRAM Total size 512MB  16bit width 
Flash:  0 kB 
Addresses 8M - 0M are saved for the U-Boot usage. 
Mem malloc Initialization (8M - 7M): Done 
NAND:512 MB 
 
Checking for BootROM Routine Errors 
 
No. of BootROM routine retries: 8 
NAND: Nand ECC error 
 
Running POST... 
 
        DDR2 data bus test                               PASSED 
 
        DDR2 address bus test                            PASSED 
 
        UART 1 internal loopback test on baudrate   9600 PASSED 
        UART 1 internal loopback test on baudrate  19200 PASSED 
        UART 1 internal loopback test on baudrate 115200 PASSED 
 
        Device: 0, Size: 512 MB, Page Size: 2 KB, Block Size: 128 KB 
        NAND detection test                              PASSED 
 
        Bad Block: 08e60000 
        Bad Block: 18720000 
        Bad Block: 1fb60000 
        NAND bad-block detection test                    PASSED 
 
        RTC test                                         PASSED 
 
6/6 tests PASSED 
POST completed 
 
CPU : Marvell Feroceon (Rev 1) 
 
Streaming disabled 
Write allocate disabled 
 
Module 0 is AUDIO 
Module 1 is RGMII 
 
USB 0: host mode 
PCI 0: PCI Express Root Complex Interface 
PEX interface detected Link X1 
Net:   egiga0 [PRIME], egiga1 
Hit any key to stop autoboot:  0 
Marvell>> 
Marvell>> setenv loadaddr 0x2000000 
Marvell>> setenv mtd1Size 0x400000 
Marvell>> setenv filesize 0x45DD000 
Marvell>> saveenv 
Saving Environment to NAND... 
Erasing Nand...Writing to Nand... done 



 

 
      

 

OpenRD-Client - Marvell® 88F6281 based Reference Design 

Designed for Marvell® by eInfochips 

Page 48 of 76 

Marvell>> reset 
? 
         __  __                      _ _ 
        |  \/  | __ _ _ ____   _____| | | 
        | |\/| |/ _` | '__\ \ / / _ \ | | 
        | |  | | (_| | |   \ V /  __/ | | 
        |_|  |_|\__,_|_|    \_/ \___|_|_| 
 _   _     ____              _ 
| | | |   | __ )  ___   ___ | |_ 
| | | |___|  _ \ / _ \ / _ \| __| 
| |_| |___| |_) | (_) | (_) | |_ 
 \___/    |____/ \___/ \___/ \__| 
 ** MARVELL BOARD: OpenRD-Client LE 
 
U-Boot 1.1.4 (Apr 22 2009 - 20:18:28) Marvell version: 3.4.16 
 
U-Boot code: 00600000 -> 0067FFF0  BSS: -> 006CEE80 
 
Soc: 88F6281 A0 (DDR2) 
CPU running @ 1200Mhz L2 running @ 400Mhz 
SysClock = 400Mhz , TClock = 200Mhz 
 
DRAM CAS Latency = 5 tRP = 5 tRAS = 18 tRCD=6 
DRAM CS[0] base 0x00000000   size 256MB 
DRAM CS[1] base 0x10000000   size 256MB 
DRAM Total size 512MB  16bit width 
Flash:  0 kB 
Addresses 8M - 0M are saved for the U-Boot usage. 
Mem malloc Initialization (8M - 7M): Done 
NAND:512 MB 
 
Checking for BootROM Routine Errors 
 
No. of BootROM routine retries: 8 
NAND: Nand ECC error 
 
Running POST... 
 
        DDR2 data bus test                               PASSED 
 
        DDR2 address bus test                            PASSED 
 
        UART 1 internal loopback test on baudrate   9600 PASSED 
        UART 1 internal loopback test on baudrate  19200 PASSED 
        UART 1 internal loopback test on baudrate 115200 PASSED 
 
        Device: 0, Size: 512 MB, Page Size: 2 KB, Block Size: 128 KB 
        NAND detection test                              PASSED 
 
        Bad Block: 08e60000 
        Bad Block: 18720000 
        Bad Block: 1fb60000 
        NAND bad-block detection test                    PASSED 
 
        RTC test                                         PASSED 
 
6/6 tests PASSED 
POST completed 



 

 
      

 

OpenRD-Client - Marvell® 88F6281 based Reference Design 

Designed for Marvell® by eInfochips 

Page 49 of 76 

 
CPU : Marvell Feroceon (Rev 1) 
 
Streaming disabled 
Write allocate disabled 
 
Module 0 is AUDIO 
Module 1 is RGMII 
 
USB 0: host mode 
PCI 0: PCI Express Root Complex Interface 
PEX interface detected Link X1 
Net:   egiga0 [PRIME], egiga1 
Hit any key to stop autoboot:  0 
Marvell>> rcvr 
USB:   scanning bus for devices... 3 USB Device(s) found 
       scanning bus for storage devices... 1 Storage Device(s) found 
Trying to load image from USB flash drive using FAT FS 
reading /flashware.img 
 
** Unable to read "/flashware.img" from usb 0:1 ** 
Trying to load image from USB flash drive using ext2 FS partition 0 
Failed to mount ext2 filesystem... 
** Bad ext2 partition or disk - usb 0:0 ** 
Trying to load image from USB flash drive using ext2 FS partition 1 
.... 
.............. 
.......................................................................
.......................................................................
........................ 
.......................................................................
.......................................................................
........................ 
.......................................................................
.......................................................................
........................ 
.......................................................................
.......................................................................
........................ 
 
73256960 bytes read 
Update bootcmd 
 
bootcmd: setenv bootargs $(console) root=/dev/ram0 rootfstype=squashfs 
initrd=0x2400000,0x41dd000 ramdisk_size=67444 recovery=usb 
serverip=0.0.0.0; bootm 0x2000000; 
Booting the image (@ 0x2000000)... 
## Booting image at 02000000 ... 
   Image Name:   Linux-2.6.22.18 
   Created:      2009-04-22  15:01:37 UTC 
   Image Type:   ARM Linux Kernel Image (uncompressed) 
   Data Size:    2405764 Bytes =  2.3 MB 
   Load Address: 00008000 
   Entry Point:  00008000 
   Verifying Checksum ... OK 
OK 
 
Starting kernel ... 



 

 
      

 

OpenRD-Client - Marvell® 88F6281 based Reference Design 

Designed for Marvell® by eInfochips 

Page 50 of 76 

 
Uncompressing 
Linux..................................................................
.......................................................................
.......... 
Linux version 2.6.22.18 (dhaval@devbox) (gcc version 4.2.1) #1 Wed Apr 
22 20:31:28 IST 2009 
CPU: ARM926EJ-S [56251311] revision 1 (ARMv5TE), cr=00053177 
Machine: Feroceon-KW 
Using UBoot passing parameters structure 
Memory policy: ECC disabled, Data cache writeback 
CPU0: D VIVT write-back cache 
CPU0: I cache: 16384 bytes, associativity 4, 32 byte lines, 128 sets 
CPU0: D cache: 16384 bytes, associativity 4, 32 byte lines, 128 sets 
Built 1 zonelists.  Total pages: 130048 
Kernel command line: console=ttyS0,115200 root=/dev/ram0 
rootfstype=squashfs initrd=0x2400000,0x41dd000 ramdisk_size=67444 
recovery=usb serverip=0.0.0.0 
PID hash table entries: 2048 (order: 11, 8192 bytes) 
Console: colour dummy device 80x30 
Dentry cache hash table entries: 65536 (order: 6, 262144 bytes) 
Inode-cache hash table entries: 32768 (order: 5, 131072 bytes) 
Memory: 256MB 256MB 0MB 0MB = 512MB total 
Memory: 447360KB available (4376K code, 365K data, 140K init) 
Mount-cache hash table entries: 512 
CPU: Testing write buffer coherency: ok 
NET: Registered protocol family 16 
 
CPU Interface 
------------- 
SDRAM_CS0 ....base 00000000, size 256MB 
SDRAM_CS1 ....base 10000000, size 256MB 
SDRAM_CS2 ....disable 
SDRAM_CS3 ....disable 
PEX0_MEM ....base e8000000, size 128MB 
PEX0_IO ....base f2000000, size   1MB 
INTER_REGS ....base f1000000, size   1MB 
NFLASH_CS ....base fa000000, size   2MB 
SPI_CS ....base f4000000, size  16MB 
BOOT_ROM_CS ....no such 
DEV_BOOTCS ....no such 
CRYPT_ENG ....base f0000000, size   2MB 
 
  Marvell Development Board (LSP Version KW_LSP_4.2.7_patch2)-- OpenRD-
Client  Soc: 88F6281 A0 LE 
 
 Detected Tclk 200000000 and SysClk 400000000 
MV Buttons Device Load 
Marvell USB EHCI Host controller #0: c65fa600 
PEX0 interface detected Link X1 
PCI: bus0: Fast back to back transfers disabled 
SCSI subsystem initialized 
usbcore: registered new interface driver usbfs 
usbcore: registered new interface driver hub 
usbcore: registered new device driver usb 
Time: kw_clocksource clocksource has been installed. 
NET: Registered protocol family 2 
IP route cache hash table entries: 16384 (order: 4, 65536 bytes) 



 

 
      

 

OpenRD-Client - Marvell® 88F6281 based Reference Design 

Designed for Marvell® by eInfochips 

Page 51 of 76 

TCP established hash table entries: 65536 (order: 7, 524288 bytes) 
TCP bind hash table entries: 65536 (order: 6, 262144 bytes) 
TCP: Hash tables configured (established 65536 bind 65536) 
TCP reno registered 
checking if image is initramfs...it isn't (bad gzip magic numbers); 
looks like an initrd 
Freeing initrd memory: 67444K 
RTC registered 
Use the XOR engines (acceleration) for enhancing the following 
functions: 
  o RAID 5 Xor calculation 
  o kernel memcpy 
  o kenrel memzero 
Number of XOR engines to use: 4 
cesadev_init(c0011674) 
mvCesaInit: sessions=640, queue=64, pSram=f0000000 
Warning: TS unit is powered off. 
MV Buttons Driver Load 
squashfs: version 3.3 (2007/10/31) Phillip Lougher 
squashfs: LZMA suppport for slax.org by jro 
NTFS driver 2.1.28 [Flags: R/W]. 
JFFS2 version 2.2. (NAND) Â© 2001-2006 Red Hat, Inc. 
io scheduler noop registered 
io scheduler anticipatory registered (default) 
XGIfb: Options <NULL> 
XGIfb: Relocate IO address: 1000 [00001030] 
XGIfb: Enable PCI device 
XGIfb: Video ROM usage disabled 
 
XGIfb: Enable PCI device 
XGIfb: Video ROM usage disabled 
XGIfb: SR14=0 DramSzie 200000 ChannelNum 1 
XGIfb: Framebuffer at 0xe8000000, mapped to 0xe0c00000, size 2048k 
XGIfb: MMIO at 0xec000000, mapped to 0xe0880000, size 256k 
XGIfb: XGIInitNew() ...12345678910111215171818118218319202122232425OK 
XGIfb: Memory heap starting at 4096K 
XGIfb: Using MMIO queue mode 
XGIfb: No or unknown bridge type detected 
XGIfb: Default mode is 1024x768x16 (60Hz) 
Console: switching to colour frame buffer device 128x48 
XGIfb: Installed XGIFB_GET_INFO ioctl (80046ef8) 
fb0:  frame buffer device, Version 0.8.01 
Serial: 8250/16550 driver $Revision: 1.90 $ 4 ports, IRQ sharing 
disabled 
serial8250.0: ttyS0 at MMIO 0xf1012000 (irq = 33) is a 16550A 
serial8250.0: ttyS1 at MMIO 0xf1012100 (irq = 34) is a 16550A 
RAMDISK driver initialized: 20 RAM disks of 67444K size 4096 blocksize 
Loading Marvell Ethernet Driver: 
  o Cached descriptors in DRAM 
  o DRAM SW cache-coherency 
  o Single RX Queue support - ETH_DEF_RXQ=0 
  o Single TX Queue support - ETH_DEF_TXQ=0 
  o TCP segmentation offload enabled 
  o Receive checksum offload enabled 
  o Transmit checksum offload enabled 
  o Network Fast Processing (Routing) supported 
  o Driver ERROR statistics enabled 
  o Driver INFO statistics enabled 



 

 
      

 

OpenRD-Client - Marvell® 88F6281 based Reference Design 

Designed for Marvell® by eInfochips 

Page 52 of 76 

  o Proc tool API enabled 
  o Rx descripors: q0=128 
  o Tx descripors: q0=532 
  o Loading network interface(s): 
    o eth0, ifindex = 1, GbE port = 0 
    o eth1, ifindex = 2, GbE port = 1 
 
mvFpRuleDb (dc3c0000): 16384 entries, 65536 bytes 
Intel(R) PRO/1000 Network Driver - version 7.3.20-k2-NAPI 
Copyright (c) 1999-2006 Intel Corporation. 
e100: Intel(R) PRO/100 Network Driver, 3.5.17-k4-NAPI 
e100: Copyright(c) 1999-2006 Intel Corporation 
Integrated Sata device found 
scsi0 : Marvell SCSI to SATA adapter 
scsi1 : Marvell SCSI to SATA adapter 
NFTL driver: nftlcore.c $Revision: 1.98 $, nftlmount.c $Revision: 1.41 
$ 
NAND device: Manufacturer ID: 0xec, Chip ID: 0xdc (Samsung NAND 512MiB 
3,3V 8-bit) 
Scanning device for bad blocks 
Bad eraseblock 1139 at 0x08e60000 
Bad eraseblock 3129 at 0x18720000 
Bad eraseblock 4059 at 0x1fb60000 
Using static partition definition 
Creating 3 MTD partitions on "nand_mtd": 
0x00000000-0x00100000 : "u-boot" 
0x00100000-0x00300000 : "uImage" 
0x00300000-0x20000000 : "root" 
ehci_marvell ehci_marvell.70059: Marvell Orion EHCI 
ehci_marvell ehci_marvell.70059: new USB bus registered, assigned bus 
number 1 
ehci_marvell ehci_marvell.70059: irq 19, io base 0xf1050100 
ehci_marvell ehci_marvell.70059: new USB bus registered, assigned bus 
number 1 
ehci_marvell ehci_marvell.70059: irq 19, io base 0xf1050100 
ehci_marvell ehci_marvell.70059: USB 2.0 started, EHCI 1.00, driver 10 
Dec 2004 
usb usb1: configuration #1 chosen from 1 choice 
hub 1-0:1.0: USB hub found 
hub 1-0:1.0: 1 port detected 
USB Universal Host Controller Interface driver v3.0 
usb 1-1: new high speed USB device using ehci_marvell and address 2 
usb 1-1: configuration #1 chosen from 1 choice 
hub 1-1:1.0: USB hub found 
hub 1-1:1.0: 7 ports detected 
usb 1-1.1: new high speed USB device using ehci_marvell and address 3 
usb 1-1.1: configuration #1 chosen from 1 choice 
usbcore: registered new interface driver usblp 
drivers/usb/class/usblp.c: v0.13: USB Printer Device Class driver 
Initializing USB Mass Storage driver... 
scsi2 : SCSI emulation for USB Mass Storage devices 
usbcore: registered new interface driver usb-storage 
USB Mass Storage support registered. 
mice: PS/2 mouse device common for all mice 
i2c /dev entries driver 
Linux telephony interface: v1.00 
Marvell Telephony Driver: 
 



 

 
      

 

OpenRD-Client - Marvell® 88F6281 based Reference Design 

Designed for Marvell® by eInfochips 

Page 53 of 76 

Warning Tdm is Powered Off 
md: linear personality registered for level -1 
md: raid0 personality registered for level 0 
md: raid1 personality registered for level 1 
raid6: int32x1     98 MB/s 
raid6: int32x2    114 MB/s 
raid6: int32x4    123 MB/s 
raid6: int32x8    111 MB/s 
raid6: using algorithm int32x4 (123 MB/s) 
md: raid6 personality registered for level 6 
md: raid5 personality registered for level 5 
md: raid4 personality registered for level 4 
raid5: measuring checksumming speed 
   arm4regs  :  1089.600 MB/sec 
   8regs     :   758.800 MB/sec 
   32regs    :   904.400 MB/sec 
raid5: using function: arm4regs (1089.600 MB/sec) 
device-mapper: ioctl: 4.11.0-ioctl (2006-10-12) initialised: dm-
devel@redhat.com 
dm_crypt using the OCF package. 
sdhci: Secure Digital Host Controller Interface driver 
sdhci: Copyright(c) Pierre Ossman 
mvsdmmc: irq =28 start f1090000 
mvsdmmc: irq_detect=93 
usbcore: registered new interface driver usbhid 
drivers/hid/usbhid/hid-core.c: v2.6:USB HID core driver 
Advanced Linux Sound Architecture Driver Version 1.0.14 (Thu May 31 
09:03:25 2007 UTC). 
ALSA device list: 
  #0: Marvell mv88fx_snd ALSA driver 
TCP cubic registered 
NET: Registered protocol family 1 
NET: Registered protocol family 17 
md: Autodetecting RAID arrays. 
md: autorun ... 
md: ... autorun DONE. 
RAMDISK: squashfs filesystem found at block 0 
RAMDISK: Loading 67444KiB [1 disk] into ram disk... done. 
VFS: Mounted root (squashfs filesystem) readonly. 
Freeing init memory: 140K 
init started: BusyBox v1.7.0 (2008-02-26 19:25:17 IST) 
starting pid 305, tty '': '/etc/init.d/rcS' 
starting pid 307, tty '': '/bin/sh' 
-sh-3.2# scsi 2:0:0:0: Direct-Access     JetFlash TS2GJFV30        8.07 
PQ: 0 ANSI: 2 
sd 2:0:0:0: [sda] 4014078 512-byte hardware sectors (2055 MB) 
sd 2:0:0:0: [sda] Write Protect is off 
sd 2:0:0:0: [sda] Assuming drive cache: write through 
sd 2:0:0:0: [sda] 4014078 512-byte hardware sectors (2055 MB) 
sd 2:0:0:0: [sda] Write Protect is off 
sd 2:0:0:0: [sda] Assuming drive cache: write through 
 sda: sda1 
sd 2:0:0:0: [sda] Attached SCSI removable disk 
sd 2:0:0:0: Attached scsi generic sg0 type 0 
 
-sh-3.2# 

 



 

 
      

 

OpenRD-Client - Marvell® 88F6281 based Reference Design 

Designed for Marvell® by eInfochips 

Page 54 of 76 

8.2 U-Boot Terms for USB Recovery  
  
The U-Boot sources provided in the openrd_uboot.zip file includes the necessary modification 
that enables the USB recovery procedure. It is important to know certain terms that can help you 
debug the USB recovery procedure if it does not run successfully.  
  
It is important to check the following parameters in the U-Boot if the USB recovery procedure 
fails:  
  
a) mtd1Size – This is the size of the mtd partition ‘1’. This is the NAND partition where the 
uImage is stored after writing it to the NAND flash.  
b) filesize – This is the parameter where the file size of the flashware.img is defined in hex.  
c) loadaddr – It is the load address for the u-boot to load the flashware.img in RAM. By default, it 
is set to 0x2000000.  
  
Following commands are used at the u-boot prompt to check the above variables to confirm they 
are correct. 
  
Marvell>> print mtd1Size  
 
Marvell>> print loadaddr  
 
Marvell>> print filesize  
  
Below is the log of the U-Boot prompt using the above commands:  
  __  __                      _ _ 
        |  \/  | __ _ _ ____   _____| | | 
        | |\/| |/ _` | '__\ \ / / _ \ | | 
        | |  | | (_| | |   \ V /  __/ | | 
        |_|  |_|\__,_|_|    \_/ \___|_|_| 
 _   _     ____              _ 
| | | |   | __ )  ___   ___ | |_ 
| | | |___|  _ \ / _ \ / _ \| __| 
| |_| |___| |_) | (_) | (_) | |_ 
 \___/    |____/ \___/ \___/ \__| 
 ** MARVELL BOARD: OpenRD-Client LE 
 
U-Boot 1.1.4 (Apr 22 2009 - 20:18:28) Marvell version: 3.4.16 
 
U-Boot code: 00600000 -> 0067FFF0  BSS: -> 006CEE80 
 
Soc: 88F6281 A0 (DDR2) 
CPU running @ 1200Mhz L2 running @ 400Mhz 
SysClock = 400Mhz , TClock = 200Mhz 
 
DRAM CAS Latency = 5 tRP = 5 tRAS = 18 tRCD=6 
DRAM CS[0] base 0x00000000   size 256MB 
DRAM CS[1] base 0x10000000   size 256MB 
DRAM Total size 512MB  16bit width 
Flash:  0 kB 
Addresses 8M - 0M are saved for the U-Boot usage. 
Mem malloc Initialization (8M - 7M): Done 
NAND:512 MB 
 
Checking for BootROM Routine Errors 
 



 

 
      

 

OpenRD-Client - Marvell® 88F6281 based Reference Design 

Designed for Marvell® by eInfochips 

Page 55 of 76 

No. of BootROM routine retries: 8 
NAND: Nand ECC error 
 
Running POST... 
 
        DDR2 data bus test                               PASSED 
 
        DDR2 address bus test                            PASSED 
 
        UART 1 internal loopback test on baudrate   9600 PASSED 
        UART 1 internal loopback test on baudrate  19200 PASSED 
        UART 1 internal loopback test on baudrate 115200 PASSED 
 
        Device: 0, Size: 512 MB, Page Size: 2 KB, Block Size: 128 KB 
        NAND detection test                              PASSED 
 
        Bad Block: 08e60000 
        Bad Block: 18720000 
        Bad Block: 1fb60000 
        NAND bad-block detection test                    PASSED 
 
        RTC test                                         PASSED 
 
6/6 tests PASSED 
POST completed 
 
CPU : Marvell Feroceon (Rev 1) 
 
Streaming disabled 
Write allocate disabled 
 
Module 0 is AUDIO 
Module 1 is RGMII 
 
USB 0: host mode 
PCI 0: PCI Express Root Complex Interface 
PEX interface detected Link X1 
Net:   egiga0 [PRIME], egiga1 
Hit any key to stop autoboot:  0 
Marvell>> rcvr 
USB:   scanning bus for devices... 3 USB Device(s) found 
       scanning bus for storage devices... 1 Storage Device(s) found 
Trying to load image from USB flash drive using FAT FS 
reading /flashware.img 
 
** Unable to read "/flashware.img" from usb 0:1 ** 
Trying to load image from USB flash drive using ext2 FS partition 0 
Failed to mount ext2 filesystem... 
** Bad ext2 partition or disk - usb 0:0 ** 
Trying to load image from USB flash drive using ext2 FS partition 1 
.... 
.............. 
.......................................................................
.......................................................................
........................ 
.......................................................................
.......................................................................
........................ 



 

 
      

 

OpenRD-Client - Marvell® 88F6281 based Reference Design 

Designed for Marvell® by eInfochips 

Page 56 of 76 

.......................................................................

.......................................................................

........................ 

.......................................................................

.......................................................................

........................ 
 
73256960 bytes read 
Update bootcmd 

  
8.3 Building flashware.img  
 
This section provides the steps to create the flashware.img for the USB recovery process. Please 
make sure to build a uImage with the following support enabled as default:  
 
1. squashfs support  
2. initrd support  
3. RAMDISK support with the following  
a. (20)  Default number of RAM disks  
b. (4096) Default RAM disk size (kbytes)  
c. (4096) Default RAM disk block size (bytes) (NEW)   
  
You can enable the support for the above features in the uImage by using ‘make menuconfig’ 
command after making the ‘mv88f6281_defconfig’ configuration file, while building the kernel and 
the LSP. Refer to section for information in configuring and building the kernel and 
LSP for OpenRD.  
  
Once the uImage is created with the initrd, RAMDISK and squashfs support, do the following on 
the Linux machine.  
  
1. Find the size of the uImage. Usually, the uImage file is around 2.3 MB.  
 
# ls –al uImage.openrd  
   
2. For the recovery procedure, the mtd partition for uImage is set to be 0x400000, 4MB or 
4194304 bytes. Hence we need to create a uImage.img file which is 4MB in size. Hence we need 
to use a pad file called uimage.pad. The size of the uImage.pad file is obtained by using the 
following equation:  
 
size = (4194304 bytes) – <size of uImage>  
  
3. On the linux host, use the following command to create a uImage.pad file. 
 
# dd if=/dev/zero of=uImage.pad bs=(size) count=1  
  
4. Create the uImage.img file using the cat command as below. 
 
# cat uimage.openrd uImage.pad >> uImage.img  
  
5. Use the rootfsv1.0 from the openrd_host_swsupportpackage/linux/rootfs.tar.gz to create a 
squashfs image ‘rootfs.img’. The rootfs.img can be created by using the command as below.  
 
# mksquashfs rootfsv1.0 rootfs.img –b 4096  
 



 

 
      

 

OpenRD-Client - Marvell® 88F6281 based Reference Design 

Designed for Marvell® by eInfochips 

Page 57 of 76 

Parallel mksquashfs: Using 1 processor 
Creating little endian 3.1 filesystem on rootfs.img, block size 4096. 
[=========================================================================
==================================================== ] 40467/40707  99% 
Exportable Little endian filesystem, data block size 4096, compressed data, compressed 
metadata, compressed fragments, duplicates are removed 
Filesystem size 67443.06 Kbytes (65.86 Mbytes) 
 44.81% of uncompressed filesystem size (150522.31 Kbytes) 
Inode table size 139624 bytes (136.35 Kbytes) 
 38.53% of uncompressed inode table size (362384 bytes) 
Directory table size 68147 bytes (66.55 Kbytes) 
 58.31% of uncompressed directory table size (116878 bytes) 
Number of duplicate files found 18 
Number of inodes 7346 
Number of files 5187 
Number of fragments 1751 
Number of symbolic links  322 
Number of device nodes 1596 
Number of fifo nodes 0 
Number of socket nodes 0 
Number of directories 241 
Number of uids 2 
 dhaval (500) 
 root (0) 
Number of gids 1 
 unknown (1000) 
  
6. Concatenate the uImage.img and rootfs.img image files to get flashware.img.  
 
# cat uImage.img rootfs.img >> flashware.img  
  
 



 

 
      

 

OpenRD-Client - Marvell® 88F6281 based Reference Design 

Designed for Marvell® by eInfochips 

Page 58 of 76 

9. Interfaces/Peripherals Not Tested 
 
The interfaces provided on header are not tested. 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
      

 

OpenRD-Client - Marvell® 88F6281 based Reference Design 

Designed for Marvell® by eInfochips 

Page 59 of 76 

10. Known Issues 
 
1. Writing u-boot using OpenOCD causes u-boot POST code to print.  This is due to limitation of 

OpenOCD.  
 

No. of BootROM routine retries: 8 
NAND: Nand ECC error 
 
Workaround: 
Re-write u-boot using u-boot; this error will be removed.  U-boot can be reflashed using U-
boot using following procedure: 
 
Following procedure assumes tftp server setup on 192.168.1.2/255.255.255.0, user will need 
to change ipaddr, netmask and serverip environment variables according to network 
configurations to which OpenRD is connected. 
 
Marvell>> setenv ipaddr 192.168.1.1 
Marvell>> setenv netmask 255.255.255.0 
Marvell>> setenv serverip 192.168.1.2 
Marvell>> bubt u-boot.bin.openrd 

  
2. GUI performance using Fedora Core 8, Ubuntu 9.04 Jaunty file systems is slow at times. 
3. Compiling u-boot, and Linux Kernel generate multiple warning; these warnings can be safely 

ignored. 
4. ‘top’ command on Ubuntu 9.04 Jaunty file system shows > 50% CPU utilization after login 

using GUI.  This is determined to be bug with top command. 



 

 
      

 

OpenRD-Client - Marvell® 88F6281 based Reference Design 

Designed for Marvell® by eInfochips 

Page 60 of 76 

11.  Power Supply Notice 
 
Power supply requirement for the OpenRD-Client is D.C 12V/3A. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
      

 

OpenRD-Client - Marvell® 88F6281 based Reference Design 

Designed for Marvell® by eInfochips 

Page 61 of 76 

12. Further Reading  
 
eInfochips Web store : http://www.einfochips.com/marvell 
 
Downloads: 
http://www.marvell.com/products/embedded_processors/developer/kirkwood/openrd.jsp 



 

 
      

 

OpenRD-Client - Marvell® 88F6281 based Reference Design 

Designed for Marvell® by eInfochips 

Page 62 of 76 

Appendix A 
 
Configuring the Console  
 
Connect the USB to mini-USB console cable in the mini-USB connector on the OpenRD.  
 
1. Preparing Minicom as the Board Console (Linux)  
 
Pre-requisite 
 

1. Make sure ftdi_sio.ko on Linux Host is a loadable module.  FTDI driver for Linux is merged 
with stock Linux Kernel for all kernels above v2.6.10 (stock kernel can be obtained from 
www.kernel.org) have FTDI driver built-in. If it’s already loaded, unload it using following 
command: 

 
 # rmmod ftdi_sio 
 

2. Re-load ftdi_si.ko on Linux Host using OpenRD VID/PID; and power on the system 
 
 # modprobe ftdi_sio vendor=0x0403 product=0x9e90 
 
 If driver are loaded properly, giving following command should list two USB devices – 
 namely /dev/ttyUSB0, /dev/ttyUSB1. 
 
 # ls –l /dev/ttyUSB* 
 
 
Below are the configuration settings for minicom:  

1. Login as root. 
2. Execute minicom -s. 
3. From the menu select Serial port setup. 
4. Set Serial device field to /dev/ttyUSB1. (Assuming development board connected to USB 

port)  
5. Set Bps/Par/Bits field to 115200 8N1. 
6. Set Hardware Flow Control to No. 
7. Set Software Flow Control to No. 
8. Select Exit. 
9. Re-run minicom, using command – minicom -o 

  
2. Preparing a Terminal as the Board Console (Windows)  
 
Use the CDM 2.04.14_OpenRD package at  
../openrd_host_swsupportpackage/windows/openrd-ftdi-driver.zip to install the mini-USB-to-USB 
debug console driver. Below are the configuration settings for Terminal:  

 
1. On Windows Host, Check ‘Ports’ from the ‘Device Manager’. It should display two USB 

serial ports with different COM port number in the list. The higher COM port number of 
this is used for console. Steps to verify this: 

 
a. Right click on ‘My Computer’. 
b. Select ‘Properties’ option. 
c. Select ‘Hardware’ tab. 

 



 

 
      

 

OpenRD-Client - Marvell® 88F6281 based Reference Design 

Designed for Marvell® by eInfochips 

Page 63 of 76 

 
Figure 10 System Properties 

 

2. Click on ‘Device Manager’ button. 
 

3. Expand ‘Ports (COM & LPT)’ label as shown below.  As seen below COM4 is higher 
number; and thus, COM4 should be used as console. 

 
 

 

 

Figure 11 Device Manager 

 
4. Launch Hyper Terminal application. Select COM port for console as indicated by 

previous point. 
 



 

 
      

 

OpenRD-Client - Marvell® 88F6281 based Reference Design 

Designed for Marvell® by eInfochips 

Page 64 of 76 

 

Figure 12 Hyper Terminal 

 

 

 

Figure 13 COM Properties 

 
5. Set the Configure properties as follows:  

• Bits per sec field to 115200  
• Data bits to 8 
• Parity to None  
• Stop bit to 1 
• Flow Control to None  

 
6. Now click on ‘Call’ button from toolbar. This will help OpenRD-Client to show console to 

the Hyper Terminal. The board will boot itself and after boot up, it will provide Linux 
prompt. 
 



 

 
      

 

OpenRD-Client - Marvell® 88F6281 based Reference Design 

Designed for Marvell® by eInfochips 

Page 65 of 76 

(Note: If you are not getting any message/prints on hyper terminal, press “Disconnect” 
button from toolbar, press reset switch on board and press “Call” button again). 
 

 
 

Figure 14 U-Boot prompt on Console 
 



 

 
      

 

OpenRD-Client - Marvell® 88F6281 based Reference Design 

Designed for Marvell® by eInfochips 

Page 66 of 76 

Appendix B  
 
Configuring TFTP server/daemon  
 
On Windows Host 
 
Install Tftpd32 from http://tftpd32.jounin.net/tftpd32_download.html 
 
Run Tftpd32, click on browse for locating tftproot directory i.e. directory where uImage.openrd, u-
boot.bin.openrd are located. 
 

 
 
Figure 15 Configuring TFTP Server on Host PC  

On Linux Host 
 
Pre-requisite 
 

• xinetd  daemon installed on Linux Host, if tftp-server is not running as standalone daemon. 
 
Steps  
 
Download the rpm for host machine distribution from 
http://rpmfind.net/linux/rpm2html/search.php?query=tftp-server 
 
After downloading rpm, install it as: 
 
# rpm –ivh <tftp-server-rpmname>  
 
OR 
 
For Linux host distributions such as ubuntu, type following command on Linux host  (Note: 
internet connection is required to carry out this step) 
 
# sudo apt-get install tftp-server 



 

 
      

 

OpenRD-Client - Marvell® 88F6281 based Reference Design 

Designed for Marvell® by eInfochips 

Page 67 of 76 

Appendix C  
  
GCC cross-compiler, mkimage 
 
Follow the instructions to install the gcc cross-compiler on the Linux host system. Path for the 
gcc.tar.bz2 package is <dvd-home>/openrd-devkit-v1.0/openrd_host_swsupportpackage/linux/.  
Make sure to run all command using root user.  
 
1. Copy gcc.tar.bz2 to the /home/openrd directory on Linux host 
  
2. Go to the /home/openrd directory. Create directory named “toolchain” 
  
# cd /home/openrd 
 
/home/openrd # mkdir toolchain 
 
/home/openrd # cd toolchain 
 
/home/openrd/toolchain # 
 
3. Untar the gcc package 
 
/home/openrd/toolchain # tar -xjvf /home/openrd/gcc.tar.bz2 
 
4. Add the gcc path to the working directory 
 
/home/openrd/toolchain # export PATH=/home/openrd/toolchain/gcc/bin:$PATH  
 
/home/openrd/toolchain # cd /home/openrd/ 
  
5. Copy “mkimage” binary located to HOST Linux machine in the “/usr/bin” directory.  
  
/home/openrd/toolchain # cp <dvd-home>/openrd-devkit-v1.0/openrd_uboot/tools/mkimage 
/usr/bin/  
 



 

 
      

 

OpenRD-Client - Marvell® 88F6281 based Reference Design 

Designed for Marvell® by eInfochips 

Page 68 of 76 

Appendix D  
 
Configuring NFS on Linux Host 
 
This section provides the information on the settings needed on the Linux host to configure NFS.   
 

Create NFS root directory. Make sure following commands are applied using root user. 
Path for rootfs.tar.gz package is  
<dvd-home>/openrd-devkit- v1.0/openrd_host_swsupportpackage/linux/. 

 
/home/openrd # mkdir nfs 
/home/openrd # cd nfs 
/home/openrd # tar zxvf rootfs.tar.gz 
/home/openrd # mv rootfsv1.0 rootfs 
 

 
1. Add the following lines to the /etc/exports script and save.  

 
/home/openrd/nfs/rootfs *(rw,sync,no_root_squash)  
/tftpboot/ *(rw,sync,no_root_squash)  
 

2. Restart the ‘NFS’ server.  
  

/home/openrd # /etc/init.d/nfs restart  
Shutting down NFS mountd:   [ OK ]  
Shutting down NFS daemon:   [ OK ]  
Shutting down NFS quotas:   [ OK ]  
Shutting down NFS services:   [ OK ]  
Starting NFS services:    [ OK ]  
Starting NFS quotas:     [ OK ]  
Starting NFS daemon:    [ OK ]  
Starting NFS mountd:    [ OK ]  
/home/openrd #  

  
After restarting NFS, list NFS exports using following commands: 
 
/home/openrd # nfs-export --list 

 
 
 
 
 
 
 
 



 

 
      

 

OpenRD-Client - Marvell® 88F6281 based Reference Design 

Designed for Marvell® by eInfochips 

Page 69 of 76 

Appendix E  
 
Boot OpenRD from NFS  
 
This section provides the information on the settings needed on the Linux host and the OpenRD 
U-Boot to boot OpenRD from NFS.   
  
A. Linux Host Settings  
 
On the Linux host follow the steps below:  
  
1. Copy the ‘uImage.openrd’ to the ‘tftpboot’ folder.  Here, it’s assumed that 

/home/openrd/uImage.openrd is already created. 
 
 /home/openrd # cp –a /home/openrd/uImage.openrd/tftpboot 
  
2. Copy file system image(s) to NFS root directory.  

 
For JFFS2 
# cp /home/openrd/fc8.release.x11.openrd.nand.jffs2 /home/openrd/nfs/rootfs/ 

 
For UBIFS 
# cp /home/openrd/fc8.release.x11.openrd.nand.ubi.img /home/openrd/nfs/rootfs/ 

 
3. Copy uImage (kernel) to NFS root directory. 

 
# cp /home/openrd/uImage.openrd /home/openrd/nfs/rootfs/ 

 
B. OpenRD U-Boot Settings  
 
On the OpenRD reference board follow the steps below to boot from NFS.  
  
Marvell>> set ipaddr 192.168.1.1 
Marvell>> set netmask 255.255.255.0  
Marvell>> set serverip 192.168.1.yyy  
Marvell>> set rootpath /home/openrd/nfs/rootfs 
Marvell>> set image_name uImage.openrd 
Marvell>> setenv console 'console=ttyS0,115200 
mtdparts=nand_mtd:0x400000@0x100000(uImage),0x1fb00000@0x500000(rootfs) 
rw'  
Marvell>> set bootargs_root ‘root=/dev/nfs rw’ 
Marvell>> set bootargs_end ‘::$(netmask):DB88FXX81:eth0:none’  
Marvell>> set bootcmd ‘tftpboot 0x2000000 $(image_name);setenv bootargs  
$(console) $(bootargs_root) nfsroot=$(serverip):$(rootpath)  
ip=$(ipaddr):$(serverip)$(bootargs_end); bootm 0x2000000’  
Marvell>> saveenv 
  
Note: Here, environment variable serverip must be set to Linux host having NFS, TFTP server 
setup. 



 

 
      

 

OpenRD-Client - Marvell® 88F6281 based Reference Design 

Designed for Marvell® by eInfochips 

Page 70 of 76 

Appendix F  
  
MTD-Utils (UBIFS, JFFS2) 
 
Follow the instructions to install the mtd-utils on the Linux host system. Path for the mtd-
utils.tar.gz package is <dvd-home>/openrd-devkit-v1.0/openrd_filesystem/binary/.  Make sure to 
run all command using root user.  
 
1. Copy mtd-utils-bin.tar.gz to the /home/openrd directory on Linux host 
  
2. Go to the /home/openrd directory. Create directory named “tools” 
  
# cd /home/openrd 
 
/home/openrd # mkdir tools 
 
/home/openrd # cd tools 
 
/home/openrd/tools # 
 
3. Untar the mtd-utils package 
 
/home/openrd/tools # tar -zxvf /home/openrd/mtd-utils-bin.tar.gz 
 
4. Add the mtd-utils path to the working directory 
 
/home/openrd/tools # export PATH=/home/openrd/tools:$PATH  
 
/home/openrd/tools # cd /home/openrd/ 
  



 

 
      

 

OpenRD-Client - Marvell® 88F6281 based Reference Design 

Designed for Marvell® by eInfochips 

Page 71 of 76 

Appendix G 
 
Installing Packages in the Jaunty File System  
  
1. Installing samba  
root@debian:~#   
root@debian:~#   
root@debian:~# apt-get install samba  
Reading package lists... 0%Reading package lists... 0%Reading  
package lists... 1%Reading package lists... 8%Reading package  
lists... 15%Reading package lists... 22%Reading package lists...  
26%Reading package lists... 26%Reading package lists... 26%Reading  
package lists... 26%Reading package lists... 28%Reading package  
lists... 34%Reading package lists... 40%Reading package lists...  
46%Reading package lists... 52%Reading package lists... 58%Reading  
package lists... 65%Reading package lists... 71%Reading package  
lists... 77%Reading package lists... 82%Reading package lists...  
87%Reading package lists... 92%Reading package lists... 96%Reading  
package lists... 97%Reading package lists... 97%Reading package  
lists... 99%Reading package lists... 99%Reading package lists...  
Done  
Building dependency tree... 0%Building dependency tree... 0%Building  
dependency tree... 0%Building dependency tree... 50%Building  
dependency tree... 50%Building dependency tree... 75%Building  
dependency tree         
Reading state information... 0%Reading state information...  
3%Reading state information... Done  
samba is already the newest version.  
The following packages were automatically installed and are no  
longer required:  
  libx11-data libxcb1 libxau6 libxdmcp6 libxcb-xlib0 libx11-6  
Use 'apt-get autoremove' to remove them.  
0 upgraded, 0 newly installed, 0 to remove and 13 not upgraded.  
root@debian:~#   
root@debian:~#   
root@debian:~#   
  
2. Checking for Updates  
root@debian:~#   
root@debian:~#   
root@debian:~# apt-get update  
0% [Working]            Get:1 http://ports.ubuntu.com jaunty  
Release.gpg [189B]  
            0% [1 Release.gpg 0/189B 0%]                             
99% [Working]             Get:2 http://ports.ubuntu.com jaunty  
Release [74.6kB]  
             3% [2 Release 2623/74.6kB 3%]                              
29% [2 Release 21603/74.6kB 28%]                                99%  
[Working]             99% [2 Release gpgv 74637]                           
99% [Working]             99% [Waiting for headers]                          
Get:3 http://ports.ubuntu.com jaunty/main Packages [1260kB]  
                         5% [3 Packages 0/1260kB 0%]5% [3 Packages  
0/1260kB 0%]5% [3 Packages 0/1260kB 0%]5% [3 Packages 0/1260kB 0%]                   
7% [3 Packages 20480/1260kB 1%]                               15% [3  
Packages 135168/1260kB 10%]26% [3 Packages 278528/1260kB 22%]55% [3  



 

 
      

 

OpenRD-Client - Marvell® 88F6281 based Reference Design 

Designed for Marvell® by eInfochips 

Page 72 of 76 

Packages 663552/1260kB 52%]                                  86% [3  
Packages 1077248/1260kB 85%]                                   99%  
[Working]                                                         
214kB/s 0s99% [3 Packages bzip2 0] [Waiting for headers]                        
214kB/s 0s                                                                           
Get:4 http://ports.ubuntu.com jaunty/restricted Packages [1221B]  
99% [3 Packages bzip2 0] [Waiting for headers]                        
214kB/s 0s99% [3 Packages bzip2 309248] [Waiting for headers]                   
214kB/s 0s99% [3 Packages bzip2 635904] [Waiting for headers]                   
214kB/s 0s99% [3 Packages bzip2 894976] [Waiting for headers]                   
214kB/s 0s                                                                           
Get:5 http://ports.ubuntu.com jaunty/universe Packages [4347kB]  
23% [3 Packages bzip2 894976] [5 Packages 4071/4347kB 0%]            
214kB/s 20s24% [3 Packages bzip2 1174528] [5 Packages 61011/4347kB  
1%]         214kB/s 20s29% [3 Packages bzip2 1254400] [5 Packages  
352256/4347kB 8%]        214kB/s 18s36% [3 Packages bzip2 1254400]  
[5 Packages 761856/4347kB 17%]       214kB/s 16s44% [3 Packages  
bzip2 1254400] [5 Packages 1179648/4347kB 27%]      214kB/s 14s51%  
[3 Packages bzip2 1254400] [5 Packages 1593344/4347kB 36%]       
214kB/s 12s58% [3 Packages bzip2 1254400] [5 Packages 2007040/4347kB  
46%]      214kB/s 10s61% [3 Packages bzip2 1454080] [5 Packages  
2185311/4347kB 50%]      214kB/s 10s65% [3 Packages bzip2 1619968]  
[5 Packages 2401391/4347kB 55%]       214kB/s 9s68% [3 Packages  
bzip2 1799168] [5 Packages 2569291/4347kB 59%]       415kB/s 4s71%  
[3 Packages bzip2 1944576] [5 Packages 2721131/4347kB 62%]        
415kB/s 3s74% [3 Packages bzip2 2115584] [5 Packages 2895872/4347kB  
66%]       415kB/s 3s77% [3 Packages bzip2 2270208] [5 Packages  
3094891/4347kB 71%]       415kB/s 3s81% [3 Packages bzip2 2434048]  
[5 Packages 3277391/4347kB 75%]       415kB/s 2s84% [3 Packages  
bzip2 2579456] [5 Packages 3493888/4347kB 80%]       415kB/s 2s88%  
[3 Packages bzip2 2699264] [5 Packages 3706631/4347kB 85%]        
415kB/s 1s92% [3 Packages bzip2 2765824] [5 Packages 3919872/4347kB  
90%]       415kB/s 1s94% [3 Packages bzip2 2989056] [5 Packages  
4049731/4347kB 93%]       415kB/s 0s97% [3 Packages bzip2 3175424]  
[5 Packages 4181131/4347kB 96%]       415kB/s 0s99% [3 Packages  
bzip2 3325952] [5 Packages 4346111/4347kB 99%]       415kB/s 0s                      
Get:6 http://ports.ubuntu.com jaunty/multiverse Packages [153kB]  
97% [3 Packages bzip2 3338240] [6 Packages 0/153kB 0%]                
415kB/s 0s99% [3 Packages bzip2 3469312] [6 Packages 146092/153kB  
95%]         415kB/s 0s99% [3 Packages bzip2 3470336]                                
415kB/s 0s99% [3 Packages bzip2 3731456]…..  
..  
..  
..  
..  
..            99% [6 Packages bzip2 0]                        99% [6  
Packages bzip2 234496]99% [6 Packages bzip2 372736]99% [6 Packages  
bzip2 372736]99% [6 Packages bzip2 372736]99% [6 Packages bzip2  
372736]99% [6 Packages bzip2 372736]99% [6 Packages bzip2 487424]99%  
 [6 Packages bzip2 640000]                             100% [Working]               
Fetched 5836kB in 1min4s (89.8kB/s)  
Reading package lists... 0%Reading package lists... 0%Reading  
package lists... 1%Reading package lists... 13%Reading package  
lists... 22%Reading package lists... 26%Reading package lists...  
26%Reading package lists... 26%Reading package lists... 26%Reading  
package lists... 29%Reading package lists... 40%Reading package  
lists... 49%Reading package lists... 61%Reading package lists...  
72%Reading package lists... 81%Reading package lists... 91%Reading  



 

 
      

 

OpenRD-Client - Marvell® 88F6281 based Reference Design 

Designed for Marvell® by eInfochips 

Page 73 of 76 

package lists... 97%Reading package lists... 97%Reading package  
lists... 98%Reading package lists... 99%Reading package lists...  
99%Reading package lists... Done  
root@debian:~#   
root@debian:~#  
root@debian:~#   
  
3. Installing vim  
root@debian:~#   
root@debian:~#   
root@debian:~# apt-get install vim  
Reading package lists... 0%Reading package lists... 0%Reading  
package lists... 48%Reading package lists... Done  
Building dependency tree... 0%Building dependency tree... 0%Building  
dependency tree... 50%Building dependency tree... 50%Building  
dependency tree... 79%Building dependency tree         
Reading state information... 0%Reading state information...  
2%Reading state information... Done  
The following packages were automatically installed and are no  
longer required:  
  libx11-data libapr1 libxcb1 libxau6 libxdmcp6 ssl-cert libxcb-  
xlib0 libx11-6  
  libpq5  
Use 'apt-get autoremove' to remove them.  
The following extra packages will be installed:  
  vim-runtime  
Suggested packages:  
  ctags vim-doc vim-scripts  
The following NEW packages will be installed:  
  vim vim-runtime  
0 upgraded, 2 newly installed, 0 to remove and 34 not upgraded.  
Need to get 6656kB of archives.  
After this operation, 26.7MB of additional disk space will be used.  
Do you want to continue [Y/n]? y  
0% [Working]            Get:1 http://ports.ubuntu.com jaunty/main  
vim-runtime 2:7.2.079-1ubuntu1 [5809kB]  
            0% [1 vim-runtime 0/5809kB 0%]                               
0% [1 vim-runtime 43483/5809kB 0%]                                   
3% [1 vim-runtime 208463/5809kB 3%]                                    
9% [1 vim-runtime 601203/5809kB 10%]                                     
20% [1 vim-runtime 1357483/5809kB 23%]29% [1 vim-runtime  
1967763/5809kB 33%]40% [1 vim-runtime 2668563/5809kB 45%]60% [1 vim-  
runtime 4034287/5809kB 69%]68% [1 vim-runtime 4575323/5809kB 78%]                    
87% [Working]             Get:2 http://ports.ubuntu.com jaunty/main  
vim 2:7.2.079-1ubuntu1 [847kB]  
             87% [2 vim 0/847kB 0%]                      100%  
[Working]              Fetched 6656kB in 5s (1298kB/s)  
Selecting previously deselected package vim-runtime.  
(Reading database ... 11606 files and directories currently  
installed.)  
Unpacking vim-runtime (from .../vim-runtime_2%3a7.2.079-  
1ubuntu1_all.deb) ...  
Adding `diversion of /usr/share/vim/vim72/doc/help.txt to  
/usr/share/vim/vim72/doc/help.txt.vim-tiny  
 by vim-runtime'  
Adding `diversion of /usr/share/vim/vim72/doc/tags to  
/usr/share/vim/vim72/doc/tags.vim-tiny by vim-  
runtime'  



 

 
      

 

OpenRD-Client - Marvell® 88F6281 based Reference Design 

Designed for Marvell® by eInfochips 

Page 74 of 76 

Selecting previously deselected package vim.  
Unpacking vim (from .../vim_2%3a7.2.079-1ubuntu1_armel.deb) ...  
Setting up vim-runtime (2:7.2.079-1ubuntu1) ...  
Processing /usr/share/vim/addons/doc  
  
Setting up vim (2:7.2.079-1ubuntu1) ...  
  
root@debian:~#   
root@debian:~#  
root@debian:~#   
  
4. Installing gdb  
root@debian:~#   
root@debian:~#   
root@debian:~# apt-get install gdb  
Reading package lists... 0%Reading package lists... 100%Reading  
package lists... Done  
Building dependency tree... 0%Building dependency tree... 0%Building  
dependency tree... 50%Building dependency tree... 50%Building  
dependency tree... 80%Building dependency tree         
Reading state information... 0%Reading state information...  
3%Reading state information... Done  
The following packages were automatically installed and are no  
longer required:  
  libx11-data libxcb1 libxau6 libxdmcp6 libxcb-xlib0 libx11-6  
Use 'apt-get autoremove' to remove them.  
The following extra packages will be installed:  
  libexpat1  
Suggested packages:  
  gdb-doc  
The following NEW packages will be installed:  
  gdb libexpat1  
0 upgraded, 2 newly installed, 0 to remove and 34 not upgraded.  
Need to get 3003kB of archives.  
After this operation, 6423kB of additional disk space will be used.  
Do you want to continue [Y/n]? y  
0% [Working]            Get:1 http://ports.ubuntu.com jaunty/main  
libexpat1 2.0.1-4 [119kB]  
0% [1 libexpat1 0/119kB 0%]                           1%  
[1 libexpat1 43483/119kB 36%]                                Get:2  
http://ports.ubuntu.com jaunty/main gdb 6.8-3ubuntu2 [2884kB]  
                                4% [2 gdb 4828/2884kB 0%]                          
8% [2 gdb 136228/2884kB 4%]                           12% [2 gdb  
269088/2884kB 9%]                            18% [2 gdb  
432608/2884kB 14%]23% [2 gdb 574228/2884kB 19%]28% [2 gdb  
743588/2884kB 25%]34% [2 gdb 931928/2884kB 32%]                              
40% [2 gdb 1102748/2884kB 38%]48% [2 gdb 1337808/2884kB 46%]54% [2  
gdb 1531988/2884kB 53%]                              61% [2 gdb  
1739308/2884kB 60%]                                       299kB/s  
3s70% [2 gdb 2010868/2884kB 69%]                                        
299kB/s 2s76% [2 gdb 2181688/2884kB 75%]                                        
299kB/s 2s84% [2 gdb 2410908/2884kB 83%]                                        
299kB/s 1s90% [2 gdb 2597788/2884kB 90%]                                        
299kB/s 0s97% [2 gdb 2797808/2884kB 97%]                                        
299kB/s 0s100% [Working]                                                        
299kB/s 0s                                                                           
Fetched 3003kB in 8s (338kB/s)  



 

 
      

 

OpenRD-Client - Marvell® 88F6281 based Reference Design 

Designed for Marvell® by eInfochips 

Page 75 of 76 

Selecting previously deselected package libexpat1.  
(Reading database ... 10231 files and directories currently  
installed.)  
Unpacking libexpat1 (from .../libexpat1_2.0.1-4_armel.deb) ...  
Selecting previously deselected package gdb.  
Unpacking gdb (from .../gdb_6.8-3ubuntu2_armel.deb) ...  
Setting up libexpat1 (2.0.1-4) ...  
  
Setting up gdb (6.8-3ubuntu2) ...  
  
Processing triggers for libc6 ...  
ldconfig deferred processing now taking place  
root@debian:~#   
root@debian:~#   
root@debian:~#  
  
5. Installing tftp  
root@debian:~#   
root@debian:~#   
root@debian:~# apt-get install tftp  
Reading package lists... 0%Reading package lists... 0%Reading  
package lists... 48%Reading package lists... Done  
Building dependency tree... 0%Building dependency tree... 0%Building  
dependency tree... 50%Building dependency tree... 50%Building  
dependency tree... 78%Building dependency tree         
Reading state information... 0%Reading state information...  
2%Reading state information... Done  
The following packages were automatically installed and are no  
longer required:  
  libx11-data libapr1 libxcb1 libxau6 libxdmcp6 ssl-cert libxcb-  
xlib0 libx11-6  
  libpq5  
Use 'apt-get autoremove' to remove them.  
The following NEW packages will be installed:  
tftp  
0 upgraded, 1 newly installed, 0 to remove and 34 not upgraded.  
Need to get 19.4kB of archives.  
After this operation, 86.0kB of additional disk space will be used.  
0% [Working]            Get:1 http://ports.ubuntu.com  
jaunty/universe tftp 0.17-17ubuntu1 [19.4kB]  
            0% [1 tftp 0/19.4kB 0%]                       100%  
[Working]              Fetched 19.4kB in 0s (32.9kB/s)  
Selecting previously deselected package tftp.  
(Reading database ... 13131 files and directories currently  
installed.)  
Unpacking tftp (from .../tftp_0.17-17ubuntu1_armel.deb) ...  
Setting up tftp (0.17-17ubuntu1) ...  
root@debian:~#   
root@debian:~#   
root@debian:~#  



 

 
      

 

OpenRD-Client - Marvell® 88F6281 based Reference Design 

Designed for Marvell® by eInfochips 

Page 76 of 76 

About eInfochips  
 

eInfochips is a worldwide leading Product Development Services company providing a full range 
of services including Chip/ASIC Design, Embedded System and Software Product development. 
eInfochips has been in business since 1994 and has developed strong expertise in system 
design, including hardware and software design and verification.  
 
For additional information, please visit http://www.einfochips.com 
 
Technical Question 
Email: openrd@einfochips.com 
 
Contact Us 
Email: sales@einfochips.com 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

eInfochips Limited 
11 A/B Chandra Colony, 
Ellisbridge, 
Ahmedabad 380 006 
Gujarat, India  
Tel +91-79-2656 3705 
Fax +91-79-2656 0722 

eInfochips, Inc. 
1230 Midas Way, 
Suite 200, 
Sunnyvale, CA 94085 
USA 
Tel +1-408-496-1882 
Fax +1-801-650-1480 


