
The
Go

Programming Language

Part 2

Rob Pike
r@google.com
October, 2009

Wednesday, October 21, 2009

mailto:r@google.com
mailto:r@google.com

Today’s Outline

Exercise
 any questions?

Composite types
 structures, arrays, slices, maps

Methods
they're not just for structs any more

Interfaces

Wednesday, October 21, 2009

Exercise

Any questions?

One nugget:
n0, n1 = n0+n1, n0

or for a general binary operator
n0, n1 = op(n0, n1), n0

Wednesday, October 21, 2009

Composite types

Wednesday, October 21, 2009

Arrays

Arrays are quite different from C arrays; more like
Pascal arrays. (Slices, the next topic, act a little
more like C arrays.)
var ar [3]int

declares ar to be an array of 3 integers, initially all
set to 0.

Size is part of the type.

Built in function len() reports size:
len(ar) == 3

Wednesday, October 21, 2009

Arrays are values
Arrays are values, not implicit pointers as in C. You
can take an array's address (for instance, to pass it
efficiently to a function):
func f(a [3]int) { fmt.Println(a) }
func fp(a *[3]int) { fmt.Println(a) }

func main() {

 var ar [3] int;

 f(ar); // passes a copy of ar

 fp(&ar); // passes a pointer to ar
}

Output (Print[ln] knows about arrays!):
[0 0 0]
&[0 0 0]

Wednesday, October 21, 2009

Array literals

All the composite types have similar syntax for
creating values. For arrays the literal looks like this:

Array of 3 integers:
[3]int { 1, 2, 3 }

Array of 10 integers, first three not zero:
[10]int { 1, 2, 3 }

Don't want to count? Use ... for the length:
[...]int { 1, 2, 3 }

Don't want to initialize them all? Use key:value pairs:
[10]int { 2:1, 3:1, 5:1, 7:1 }

Wednesday, October 21, 2009

Pointers to array literals

You can take the address of an array literal to get a
pointer to a newly created instance:

func fp(a *[3]int) { fmt.Println(a) }

func main() {

 for i := 0; i < 3; i++ {

 fp(&[3]int{i, i*i, i*i*i})

 }
}

Output:
&[0 0 0]
&[1 1 1]
&[2 4 8]

Wednesday, October 21, 2009

Slices
A slice is a reference to a section of an array.
Slices are used much more often than plain arrays.
A slice is very cheap. (More about this soon.)
A slice type looks like an array type without a size:
var a []int

len() returns the number of elements.
Create a slice by "slicing" an array or slice:
a = ar[7:9];

Valid indexes of a will be 0, 1 and len(a)==2.
Can also just assign an array pointer to a slice:
 a = &ar; // same as a = ar[0:len(ar)]

Wednesday, October 21, 2009

A slice references an array

ar:

Array:

Slice:

a=ar[7:9]:

7 1 5 4 3 8 7 2 11 5

base=&ar[7] len=2 cap=4

3

Conceptually:
type Slice struct {
 base *elem_type;
 len int;
 cap int;
}

Wednesday, October 21, 2009

Making slices
Slice literals look like array literals without a size:
 var slice = []int{ 1,2,3,4,5 }
What this does is create an array of length 5 and
then create a slice to refer to it.

We can also allocate a slice (and underlying array)
with the built in function make():
 var s100 = make([]int, 100) // slice: 100 ints
Why make not new? Because we need to make a slice,
not just allocate the memory. Note make([]int)
returns []int while new([]int) returns *[]int.

make is used for slices, maps, and channels.
Wednesday, October 21, 2009

Slice capacity

A slice refers to an underlying array, so there may be
elements off the end of the slice that are present in the
array.

The built in function cap() (capacity) reports how long
the slice can grow. After
var ar = [10]int{0,1,2,3,4,5,6,7,8,9}
var a = &ar[5:7] // reference to subarray {5,6}

len(a) is 2 and cap(a) is 5. We can "reslice":
a = a[0:4] // ref of subarray {5,6,7,8}

len(a) is now 4 but cap(a) is still 5.

Wednesday, October 21, 2009

Resizing a slice
Slices can be used like growable arrays. Allocate one
using make() with two numbers - length and capacity -
and reslice as it grows:
var sl = make([]int, 0, 100) // len 0, cap 100

func appendToSlice(i int, sl []int) []int {
 if len(sl) == cap(sl) { error(...) }
 n := len(sl);
 sl = sl[0:n+1]; // extend length by 1
 sl[n] = i;
 return sl
}

Thus sl's length is always the number of elements, but
it grows as needed.
This style is cheap and idiomatic in Go.

Wednesday, October 21, 2009

Slices are cheap
Feel free to allocate and resize slices as required. They
are cheap to pass around; no need to allocate.
Remember they are references, so underlying storage
can be modified.
For instance, I/O uses slices, not counts:
func Read(fd int, b []byte) int
var buffer [100]byte
for i := 0; i < 100; i++ {
 // Fill buffer one byte at a time.
 Read(fd, buffer[i:i+1]) // no allocation here
}

Split a buffer:
 header, data := buf[0:n], buf[n:len(buf)]

Strings can be sliced too, with similar efficiency.

Wednesday, October 21, 2009

Maps

Maps are another reference type. They are declared
like this:
var m map[string] float

This declares a map indexed with key type string
and value type float. It is analogous to the C++
type *map<string,float> (note the *).

On a map, len() returns the number of keys.

Wednesday, October 21, 2009

Map creation
As with a slice, a map variable refers to nothing; you
must put something in it before it can be used.

Three ways.
1) Literal: list of colon-separated key:value pairs
m = map[string]float { "1":1, "pi":3.1415 }

2) Creation
m = make(map[string]float) // make not new

3) Assignment
 var m1 map[string]float
m1 = m // m1 and m now refer to same map

Wednesday, October 21, 2009

Indexing a map

m = map[string]float { "1":1, "pi":3.1415 }

Access an element as a value:

one := m["1"]
crash := m["not present"] // error

Set an element (setting twice updates value for key)

m["2"] = 2;
m["2"] = 3; // mess with their heads

Wednesday, October 21, 2009

Testing existence
To see if a key is present in the map, we use a
multi-value assignment, the "comma ok" form:
m = map[string]float { "1":1, "pi":3.1415 };

var value float;
var present bool;

value, present = m[x];

or idiomatically
v, ok := m[x]; // hence, the "comma ok" form

If x is present in the map, sets the boolean to true
and the value to the entry for the key. If not, sets
the boolean to false and the value to the zero for
its type.

Wednesday, October 21, 2009

Deleting
Deleting an entry in the map is a multi-variate
assignment to the map entry:
m = map[string]float { "1":1.0, "pi":3.1415 };

var present bool;
var value float;
var x string = f();

m[x] = v, present;

If present is true, assigns v to the map; if present is
false, deletes the entry for key x. So to delete an
entry,

m[x] = 0, false // deletes entry for x

Wednesday, October 21, 2009

For and range
The for loop has a special syntax for iterating over
arrays, slices, maps (and more, as we'll see tomorrow).
m := map[string]float { "1":1.0, "pi":3.1415 };
for key, value := range m {
fmt.Printf("key %s, value %g\n", key, value)

}

With only one variable in the range, get the key:
for key = range m {
fmt.Printf("key %s\n", key)

}

Variables can be assigned or := declared.

For arrays and slices, get index and value.

Wednesday, October 21, 2009

Range over string
A for using range on a string loops over Unicode code
points, not bytes. (Use []byte for bytes). The string is
assumed to contain UTF-8.

The loop
s := "[\u00ff\u754c]";
for i, c := range s {
fmt.Printf("%d:%c ", i, c)

}

Prints 0:[1:ÿ 3:界 6:]

If erroneous UTF-8 is encountered, the character is
set to U+FFFD and the index advances by one byte.

Wednesday, October 21, 2009

Structs
Structs should feel very familiar: simple
declarations of data fields.

var p struct { x, y float }

More usual:

type Point struct { x, y float }
var p Point

Structs allow the programmer to define the layout
of memory.

Wednesday, October 21, 2009

Structs are values

Structs are values and new(StructType) returns a
pointer to a value.
type Point struct { x, y float };
var p Point;
p.x = 7;
p.y = 23.4;
var pp *Point = new(Point);
*pp = p;
pp.x = Pi; // sugar for (*pp).x

There is no -> notation for structure pointers. Go
provides the indirection for you.

Wednesday, October 21, 2009

Making structs

Structs are values so you can make a zeroed one
just by declaring it.
You can also allocate one with new().
var p Point; // zeroed value
pp := new(Point); // idiomatic allocation

Struct literals have the expected syntax.
p = Point{ 7.2, 8.4 }
p = Point{ y:8.4, x:7.2 }
pp := &Point{ 23.4, -1 } // idiomatic

As with arrays, taking the address of a struct literal
gives the address of a newly created value.
This last example is a constructor for *Point.

Wednesday, October 21, 2009

Exporting types and fields
The fields (and methods, coming up soon) of a
struct must start with an Uppercase letter to be
visible outside the package.
Private type and fields:
type point struct { x, y float }

Exported type and fields:
type Point struct { X, Y float }

Exported type with mix of fields:
type Point struct {
X, Y float; // exported
name string; // not exported

}

You may even have a private type with exported
fields. Exercise: why is that useful?

Wednesday, October 21, 2009

Anonymous fields
Inside a struct, you can declare fields, such as
another struct, without giving a name for the field.
These are called anonymous fields and they act as if
the inner struct is simply inserted or "embedded"
into the outer.

This simple mechanism provides a way to derive
some or all of your implementation from another
type or types.

An example follows.

Wednesday, October 21, 2009

An anonymous struct field
type A struct {
ax, ay int

}
type B struct {
A;
bx, by float;

}

B acts as if it has four fields, ax, ay, bx, and by. It's
almost as if B is { ax, ay int; bx, by float }.
However, literals for B must be filled out in detail:
b := B{ A{ 1, 2 }, 3.0, 4.0 };
fmt.Println(b.ax, b.ay, b.bx, b.by);

Prints 1 2 3 4

Wednesday, October 21, 2009

Anonymous fields have type as name
But it's richer than simple interpolation of the fields:
B also has a field A. The anonymous field looks like
a field whose name is its type.
b := B{ A{ 1, 2 }, 3.0, 4.0 };
fmt.Println(b.A);

Prints {1 2}. If A came from another package, the
field would still be called A:
import "pkg"
type C struct { pkg.A }
...
c := C { pkg.A{ 1, 2 } };
fmt.Println(c.A); // not c.pkg.A

Wednesday, October 21, 2009

Anonymous fields of any type
Any named type, or pointer to one, may be
used in an anonymous field and it may
appear at any location in the struct.

type C struct {
x float;
int;
string;

}

c := C{ 3.5, 7, “hello” };
fmt.Println(c.x, c.int, c.string)

Prints 3.5 7 hello

Wednesday, October 21, 2009

Conflicts and hiding

If there are two fields with the same name (possibly
a type-derived name), these rules apply:

1) An outer name hides an inner name.
This provides a way to override a field/method.

2) If the same name appears twice at the same level,
it is an error if the name is used by the program. (If
it's not used, it doesn't matter.)

No rules to resolve the ambiguity; it must be fixed.

Wednesday, October 21, 2009

Conflict examples
type A struct { a int }
type B struct { a, b int }

type C struct { A; B }
var c C;

Using c.a is an error: is it c.A.a or c.B.a?

type D struct { B; b float }
var d D;

Using d.b is OK: it's the float, not d.B.b
Can get at the inner b by D.B.b.

Wednesday, October 21, 2009

Methods

Wednesday, October 21, 2009

Methods on structs

Go has no classes, but you can attach methods to
any type. Yes, (almost) any type. The methods are
declared, separate from the type declaration, as
functions with an explicit receiver. The obvious
struct case:
type Point struct { x, y float }

// A method on *Point
func (p *Point) Abs() float {
return math.Sqrt(p.x*p.x + p.y*p.y)

}

Note: explicit receiver (no this), in this case of type
*Point, used within the method.

Wednesday, October 21, 2009

Methods on struct values

A method does not require a pointer as a receiver.
type Point3 struct { x, y, z float }

// A method on Point3
func (p Point3) Abs() float {
return math.Sqrt(p.x*p.x + p.y*p.y + p.z*p.z)

}

This is a bit expensive, because the Point3 will always
be passed to the method by value, but it is valid Go.

Wednesday, October 21, 2009

Invoking a method
Just as you expect.
p := &Point{ 3, 4 };
fmt.Print(p.Abs()); // will print 5

A non-struct example:
type IntVector []int
func (v IntVector) Sum() (s int) {
 for i, x := range v {
 s += x
 }
 return
}

fmt.Println(IntVector{1, 2, 3}.Sum())

Wednesday, October 21, 2009

Ground rules for methods

Methods are attached to a named type, say Foo, and
are statically bound.

The type of a receiver in a method can be either *Foo
or Foo. You can have some Foo methods and some
*Foo methods.

Foo itself cannot be a pointer type, although the
methods can have receiver type *Foo.

The type Foo must be defined in the same package as
all its methods.

Wednesday, October 21, 2009

Pointers and values

Go automatically indirects/dereferences values for
you when invoking methods.
For instance, even though a method has receiver type
*Point you can invoke it on an addressable value of
type Point.
p1 := Point{ 3, 4 };
fmt.Print(p1.Abs()); // sugar for (&p1).Abs()

Similarly, if methods are on Point3 you can use a
value of type *Point3:
p3 := &Point3{ 3, 4, 5 };
fmt.Print(p3.Abs()); // sugar for (*p3).Abs()

Wednesday, October 21, 2009

Methods on anonymous fields

Naturally, when an anonymous field is embedded in
a struct, the methods of that type are embedded as
well - in effect, it inherits the methods.

This mechanism offers a simple way to emulate
some of the effects of subclassing and inheritance.

Wednesday, October 21, 2009

Anonymous field example

type Point struct { x, y float }
func (p *Point) Abs() float { ... }

type NamedPoint struct {
Point;
name string;

}

n := &NamedPoint{Point{3, 4}, "Pythagoras"};
fmt.Println(n.Abs()); // prints 5

Wednesday, October 21, 2009

Overriding a method
Overriding works just as with fields.
type NamedPoint struct {
Point;
name string;

}
func (n *NamedPoint) Abs() float {
return n.Point.Abs() * 100.

}

n := &NamedPoint{Point{3, 4}, "Pythagoras"};
fmt.Println(n.Abs()); // prints 500

Of course you can have multiple anonymous fields
with various types - a simple version of multiple
inheritance. The conflict resolution rules keep
things simple, though.

Wednesday, October 21, 2009

Another example
A more compelling use of an anonymous field.
type Mutex struct { ... }
func (m *Mutex) Lock() { ... }

type Buffer struct {
data [100]byte;
Mutex; // need not be first in Buffer

}
var buf = new(Buffer);
buf.Lock(); // == buf.Mutex.Lock()

Note that Lock's receiver is (the address of) the
Mutex field, not the surrounding structure.
(Contrast to subclassing or Lisp mix-ins.)

Wednesday, October 21, 2009

Other types
Methods are not just for structs. They can be
defined for any (non-pointer) type.
The type must be defined in your package though.
You can't write a method for int but you can
declare a new int type and give it methods.
type Day int

var dayName = []string {
"Monday", "Tuesday", "Wednesday", ...

}

func (day Day) String() string {
return dayName[day]

}

Wednesday, October 21, 2009

Other types
Now we have an enum-like type that knows how to
print itself.

const (
Monday Day = iota;
Tuesday;
Wednesday;
...

)

var day = Tuesday;
fmt.Print(day.String()); // prints Tuesday

Wednesday, October 21, 2009

Print() understands String()
By techniques to be divulged soon, fmt.Print[ln] can
identify values that implement the method String()
as we defined for type Day. Such values are
automatically formatted by invoking the method.
Thus:

fmt.Println(0, Monday, 1, Tuesday)

prints 0 Monday 1 Tuesday.

Println can tell a plain 0 from a 0 of type Day.

So define a String() method for your types and they
will print nicely with no more work.

Wednesday, October 21, 2009

Visibility of fields and methods

Go is very different from C++ in the area of visibility.
The rules:

1) Go has package scope (C++ has file scope).
2) Spelling determines exported/local (pub/priv).
3) Structs in the same package have full access to one
another's fields and methods.
4) Local type can export its fields and methods.
5) No true subclassing, so no notion of protected.

These simple rules seem to work well in practice.

Wednesday, October 21, 2009

Interfaces

Wednesday, October 21, 2009

Watch closely

We are about to look at Go's most unusual aspect:
the interface.

Please leave your preconceptions at the door.

Wednesday, October 21, 2009

Introduction

So far, all the types we have examined have been
concrete: they implement something.

There is one more type to consider: the interface
type. It is completely abstract; it implements
nothing. Instead, it specifies a set of properties an
implementation must provide.

Interface as a concept is very close to that of Java,
and Java has an interface type, but the "interface
value" of Go is novel.

Wednesday, October 21, 2009

Definition of an interface

The word "interface" is a bit overloaded in Go:
there is the concept of an interface, and there is
an interface type, and then there are values of that
type. First, the concept.

Definition:
An interface is a set of methods.

To turn it around, the methods implemented by a
concrete type such as a struct form the interface
of that type.

Wednesday, October 21, 2009

Example
We saw this simple type before:
type Point struct { x, y float }
func (p *Point) Abs() float { ... }

The interface of type Point is just one method:
Abs() float

It's not
func (p *Point) Abs() float

because the interface abstracts away the receiver.

We embedded Point in a new type, NamedPoint;
NamedPoint has the same interface.

Wednesday, October 21, 2009

The interface type
An interface type is a specification of an interface, a
set of methods implemented by some other types.
Here's a simple one, with only one method:
type AbsInterface interface {
 Abs() float // receiver is implied
}

This is a definition of the interface implemented by
Point, or in our terminology,
Point implements AbsInterface

Also,
NamedPoint and Point3 implement AbsInterface

Methods are listed inside the type, not outside.
Wednesday, October 21, 2009

An example

type MyFloat float

func (f MyFloat) Abs() float {
if f < 0 { return -f }
return f

}

MyFloat implements AbsInterface even though
float does not.

Wednesday, October 21, 2009

Many to many
An interface may be implemented by an arbitrary
number of types. AbsInterface is implemented by
any type that has a method Abs() float,
regardless of what other methods that type may
have.
A type may implement an arbitrary number of
interfaces. Point implements at least these two:
type AbsInterface interface { Abs() float }
type EmptyInterface interface { }

And perhaps more, depending on its methods.

Every type implements EmptyInterface. That will
come in handy.

Wednesday, October 21, 2009

Interface value
Once a variable is declared with interface type, it may
store any value that implements that interface.
var ai AbsInterface;

pp := new(Point);
ai = pp; // OK: *Point has Abs()
ai = 7.; // compile-time err: float has no Abs()
ai = MyFloat(-7.); // OK: MyFloat has Abs()

ai = &Point{ 3, 4 };
fmt.Printf(ai.Abs()); // method call

Prints 5.
Note: ai is not a pointer.

Wednesday, October 21, 2009

In memory
ai is not a pointer! It's a multiword data structure.

receiver
value

method
table ptrai:

At different times it has different value and type:

-7.
(MyFloat) Abs() float

...

0xff1234
(*Point) Abs() float

...

ai = &Point{3,4} (==(*Point)(0xff1234)):

ai = MyFloat(-7.):

Wednesday, October 21, 2009

Three important facts
1) Interfaces define sets of methods. They are pure
and abstract: no implementation, no data fields. Go
has a clear separation between interface and
implementation.

2) Interface values are just that: values. They
contain any concrete value that implements all the
methods defined in the interface. That value may or
may not be a pointer.

3) Types implement interfaces just by having
methods. They do not have to declare that they do
so. For instance, every type implements
EmptyInterface.

Wednesday, October 21, 2009

Example: io.Writer
Here is the actual signature of fmt.Fprintf:
func Fprintf(w io.Writer, format string, a ...)
 (n int, error os.Error)

It doesn't write to a file, it writes to something of type
io.Writer, that is, Writer defined in the io package:
type Writer interface {

 Write(p []byte) (n int, err os.Error)
}

Fprintf can therefore be applied to any type that has
a canonical Write method, including files, pipes,
network connections, and...

Wednesday, October 21, 2009

Buffered I/O

... a write buffer. This is from the bufio package:
type Writer struct { ... }

bufio.Writer implements the canonical Write method.
func (b *Writer) Write(p []byte)
 (nn int, err os.Error)

It also has a factory: give it an io.Writer, it will return
a buffered io.Writer in the form of a bufio.Writer:
func NewWriter(wr io.Writer)
 (b *Writer, err os.Error)

And of course, os.File implements Write too.

Wednesday, October 21, 2009

Putting it together
import (
"bufio"; "fmt"; "os"

)
func main() {
// unbuffered
fmt.Fprintf(os.Stdout, "%s, ", "hello");
// buffered: os.Stdout implements io.Writer
buf, err := bufio.NewWriter(os.Stdout);
// and now so does buf.
fmt.Fprintf(buf, "%s\n", "world!");

}

Buffering works for anything that Writes.

Feels almost like Unix pipes, doesn't it? The
composability is powerful; see crypto packages.

Wednesday, October 21, 2009

Other public interfaces in io
The io package has:

Reader
Writer
ReadWriter
ReadWriteCloser

These are stylized interfaces but obvious: they capture
the functionality of anything implementing the
functions listed in their names.

This is why we can have a buffered I/O package with
an implementation separate from the I/O itself: it both
accepts and provides interface values.

Wednesday, October 21, 2009

Comparison
In C++ terms, an interface type is like a pure abstract
class, specifying the methods but implementing none
of them.

In Java terms, an interface type is much like a Java
interface.

However, in Go there is a major difference:
A type does not need to declare the interfaces it
implements or to inherit from an interface type;
if it has the methods, it implements the interface.

Some other differences will become apparent.

Wednesday, October 21, 2009

Anonymous fields work too
type LockedBufferedWriter struct {
Mutex; // has Lock and Unlock methods
bufio.Writer; // has Write method

}

func (l *LockedBufferedWriter) Write(p []byte)
 (nn int, err os.Error) {
l.Lock();
defer l.Unlock();
return l.Writer.Write(p); // inner Write()

}

LockedBufferedWriter implements io.Writer, but also,
through the anonymous Mutex,

type Locker interface { Lock(); Unlock() }

Wednesday, October 21, 2009

Example: HTTP service
type Handler interface {

 ServeHTTP(*Conn, *Request)
}

This is the interface defined by the HTTP server
package. To serve HTTP, define a type that
implements this interface and connect it to the server
(details omitted).
type Counter struct {

 n int // or could just say type Counter int
}

func (ctr *Counter) ServeHTTP(c *http.Conn,
 req *http.Request) {

 fmt.Fprintf(c, "counter = %d\n", ctr.n);

 ctr.n++;
}

Wednesday, October 21, 2009

A function (type) that serves HTTP
func notFound(c *Conn, req *Request) {
 c.SetHeader("Content-Type", "text/plain;"
 "charset=utf-8");
 c.WriteHeader(StatusNotFound);
 c.WriteString("404 page not found\n");
}

Now we define a type to implement ServeHTTP:
type HandlerFunc func(*Conn, *Request)
func (f HandlerFunc) ServeHTTP(c *Conn, req
 *Request) {

 f(c, req) // the receiver's a func; call it
}

Convert function to attach method, implement the
interface:
var Handle404 = HandlerFunc(notFound);

Wednesday, October 21, 2009

Containers & the empty interface
Sketch of the implementation of vectors:
type Element interface {}

// Vector is the container itself.
type Vector struct {

 a []Element
}

// At() returns the i'th element.
func (p *Vector) At(i int) Element {

 return p.a[i]
}

Vectors can contain anything because any type
implements the empty interface. (In fact every element
could be of different type.)

Wednesday, October 21, 2009

Type assertions
Once you put something into a Vector, it's stored as
an interface value. Need to "unbox" it to get the
original back: use a "type assertion". Syntax:
interface_value.(type_to_extract)

Will trap if type is wrong - but see next slide.
var v vector.Vector;
v.Set(0, 1234.); // stored as interface val
i := v.At(0); // retrieved as interface{}
if i != 1234. {} // compile-time err
if i.(float) != 1234. {} // OK
if i.(int) != 1234 {} // run-time err
if i.(MyFloat) != 1234. {} // err: not MyFloat

Type assertions always execute at run time. Compiler
rejects assertions guaranteed to fail.

Wednesday, October 21, 2009

Interface to interface conversion

So far we've only moved regular values into and out of
interface values, but interface values that contain the
appropriate methods can also be converted.

In effect, it's the same as unboxing the interface value
to extract the underlying concrete value, then boxing
it again for the new interface type.

The conversion's success depends on the underlying
value, not the original interface type.

Wednesday, October 21, 2009

Interface to interface example
Given
var ai AbsInterface
type SqrInterface interface { Sqr() float }
var si SqrInterface
pp := new(Point) // say *Point has Abs, Sqr
var empty interface{}

These are all OK
empty = pp; // everything satisfies empty
ai = empty.(AbsInterface); // underlying
 // value implements Abs()
 // (runtime failure otherwise)
si = ai.(SqrInterface); // *Point has Sqr()
 // even though AbsInterface doesn't
empty = si; // *Point implements empty set
 // Note: statically checkable
 // so type assertion not necessary.

Wednesday, October 21, 2009

Testing with type assertions

Can use "comma ok" type assertions to test a value for
type.
elem := vector.At(0);
if i, ok := elem.(int); ok {
fmt.Printf("int: %d\n", i)

}
else if f, ok := elem.(float); ok {
fmt.Printf("float: %g\n", f)

}
else {
fmt.Print("unknown type\n")

}

Wednesday, October 21, 2009

Testing with a type switch

Special syntax:

switch v := elem.(type) { // literal "type"
case int:
fmt.Printf("is int: %d\n", v);

case float:
fmt.Printf("is float: %g\n", v);

default:
fmt.Print("unknown type\n");

}

Wednesday, October 21, 2009

Does v implement m()?

Going one step further, can test whether a value
implements a method.

type Stringer interface { String() string }

if sv, ok := v.(Stringer); ok {
fmt.Printf("implements String(): %s\n",
 sv.String()); // note: sv not v

}

This is how Print etc. check if type can print itself.

Wednesday, October 21, 2009

Reflection and ...

There is a reflection package ("reflect") that builds
on these ideas to let you examine values to discover
their type. Too intricate to describe here but Printf
etc. use it to unpack the ... arguments.

func Printf(format string, args ...)
 (n int, err os.Error)

The ... argument inside Printf (or anywhere else) has
type interface{}, and Printf uses the reflection
package to unpack it and discover the argument list.

Wednesday, October 21, 2009

Reflection and Print
As a result, Printf and its friends know the actual
types of their arguments. Because they know if the
argument is unsigned or long, there is no %u or %ld,
only %d.
This is also how Print and Println can print the
arguments nicely without a format string.
There is also a %v ("value") format that gives default
nice output from Printf for values of any type.
fmt.Printf("%v %v %v %v", -1, "hello",
 []int{1,2,3}, uint64(456))

Prints -1 hello [1,2,3] 456.
In fact, %v is identical to the formatting done by Print
and Println.

Wednesday, October 21, 2009

Exercise

Wednesday, October 21, 2009

Exercise: Day 2

Look at the http package.

Write an HTTP server to present pages in the
file system, but transformed somehow,
perhaps rot13, perhaps something more
imaginative. Can you make the
transformation substitutable? Can you work
in your Fibonacci program somehow?

Wednesday, October 21, 2009

Next lesson

Concurrency and communication

Wednesday, October 21, 2009

The
Go

Programming Language

Part 2

Rob Pike
r@google.com
October, 2009

Wednesday, October 21, 2009

mailto:r@google.com
mailto:r@google.com

