Generalised Socket Addresses
for Unix Squeak 3.9-11

Tan Piumarta

2007-06-08

This document describes several new SocketPlugin primitives that allow
IPv6 (and arbitrary future other) address formats to be supported with minimal
changes to the current API.

The new API replaces and obsoletes all primitives that accept or answer
internet host addresses or service port numbers. Unless otherwise noted, prim-
itives that do not accept or answer a host address or service port number are
not affected and remain current.

1 Socket creation

The netType parameter to the function sqSocketCreateNetTypeSocket TypeRecv-
BytesSendBytesSemalDReadSemalDWriteSemalD should now be passed one of
the address family values shown below. For backward compatibility passing
zero (family unspecified) is equivalent to requesting INET4.

2 Internet (socket) address lookup

The old API assumes 32-bit INET4 (host) addresses and numbered service
(port) addresses throughought. The new API supports arbitray host address
sizes and both numbered and symbolic host and service names.

The old API treated the host and service parts of an internet address seper-
ately. The new API keeps them together as a single conceptual socket address.

Although not specified here, a socket address is likely to be stored in a vari-
able ByteArray object within the image. Socket addresses are opaquely typed
and timestamped (i.e., socket addresses do not survive beyond their network
session).

void sqResolverGetAddressinfoHostSizeServiceSizeFlagsFamily TypeProtocol
(char *hostName, sqlnt nameSize, char *servName, sqlnt servSize, sqint flags, sqlnt family,

sqlnt type, sqlnt protocol)

Converts hostName and/or servName into one or more socket addresses.



The flags argument should contain zero or more of the following bits:

SQ_SOCKET_NUMERIC The hostName is a numeric IPv4 or IPv6 address.
No name resolution will be attempted.

SQ_SOCKET_PASSIVE Controls how the IP address portion of the re-
turned address(es) should be treated when hostName is empty. If this
bit is set then an empty hostName corresponds to the ‘wildcard’ address
(INADDR_ANY, INGADDR_ANY), making the address(es) suitable for a
listening server. If this bit is not set then an empty hostName corresponds
to the ‘loopback’ address, suitable for a TCP connection (or UDP send)
to a local service.

The family argument should be set to one of the follwing values:

SQ_SOCKET_FAMILY_UNSPECIFIED The lookup should find as many ad-
dresses as it can for the given host name or number, irrespective of their
address families.

SQ_SOCKET_FAMILY_LOCAL The lookup should only find local (some-
times called ‘Unix’) domain host addresses. In this case, the host name
should be empty and the service name should be a path to a node in the
filesystem associated with a named socket.

SQ_SOCKET_FAMILY_INET4 The lookup should only find IPv4 host ad-
dresses.

SQ_SOCKET_FAMILY_INET6 The lookup should only find IPv6 host ad-
dresses.

Other address families (ISO/OSI, ISDN, etc.) can be supported trivially by ex-
tending the mapping from the Squeak enumeration onto the operating system’s
address family encoding.

The type argument should be set to one of the follwing values:

SQ_SOCKET_TYPE_UNSPECIFIED The lookup should find as many socket
types as it can for the given service name or number.

SQ_SOCKET_TYPE_STREAM The lookup should only find stream-oriented
socket types for the service.

SQ_SOCKET_TYPE_DGRAM The lookup should only find datagram-orien-
ted socket types for the service.

Other connection types (RAW, RDM, SEQPACKET, etc.) can be supported
trivially by extending the mapping from the Squeak enumeration onto the op-
erating system’s socket type encoding.

The protocol argument should be set to one of the follwing values:

SQ_SOCKET_PROTOCOL_UNSPEC The lookup should find as many com-

munication protocols as it can for the given service name or number.



SQ_SOCKET_PROTOCOL_TCP The lookup should only find addresses us-
ing the TCP protocol for the given service.

SQ_SOCKET_PROTOCOL_UDP The lookup should only find addresses us-
ing the UDP protocol for the given service.

Other protocols (ICMP, IGMP, RDP, RAW, etc.) can be supported trivially
by extending the mapping from the Squeak enumeration onto the operating
system’s protocol encoding.

sqResolverGetAddressinfo signals the resolver semaphore when the lookup is
complete. The following primitives retrieve the result(s) of the lookup.

sqInt sqResolverGetAddressInfoSize(void)

Answers the size in bytes of the current socket address. The image should
allocate a variable byte object of at least this size to hold the address. The
contents are opaque. The primitive returns -1 if there is no current address.
void sqResolverGetAddressinfoResultSize(char *addr, sqint addrSize)

Copies the current socket address to the addrSize bytes (determined by call-
ing sqResolverGetAddressInfoSize) of memory starting at addr. The primitive
fails if addrSize is too small or if there is no current socket address to copy into
addr.
sqInt sqResolverGetAddressInfoFamily(void)

Answers the address family (see family argument above) of the current ad-
dress. The primitive fails if there is no current address.

sqInt sqResolverGetAddressInfoType(void)

Answers the socket type (see type argument above) of the current address.
The primitive fails if there is no current address.

sqlInt sqResolverGetAddressinfoProtocol(void)

Answers the protocol (see protocol argument above) of the current address.
The primitive fails if there is no current address.

sqlnt sqResolverGetAddressinfoNext(void)

If the current socket address is not the last in the set of addresses satisfying
the most recent address lookup, the next address becomes the current address
and the primitive answers true. If there is no current address or if the current
address is the last in the set then the primitive answers false and the current
address becomes void.



sqInt sqResolverHostNameSize(void)
Answers the size of the name of the host.
void sqResolverHostNameResultSize(char *name, sqlnt nameSize)

Copies the name of the host into name which must point to at least nameSize
bytes of memory. The primitive fails if nameSize is too small to contain the entire
host name.

3 Internet (socket) address access and manipu-
lation

The new APT extends the old API to provide read (and convenience write) access
to the opaque socket addresses that encapsulate host and service addresses.

void sqResolverGetNamelnfoSizeFlags(char *addr, sqlnt addrSize, sqint flags)

Begins a lookup of the host and/or service name stored in the socket address
at addr of size addrSize.
The flags argument should contain zero or more of the following bits:

SQ_SOCKET_NUMERIC The host and/or service numbers should be re-
turned in numeric form (instead of name form).

This primitive signals the resolver semaphore when the lookup is complete.
The primitive fails if addr or addrSize is invalid.

sqlnt sqResolverGetNamelnfoHostSize(void)

Answers the size of the host name (or number) returned from the last call
to sqResolverGetNamelnfo. The primitive fails if there was no previous call.

void sqResolverGetNamelnfoHostResultSize(char *name, sqlnt nameSize)

Copies the the host name (or number) into name which contains at least
nameSize bytes. The primitive fails if nameSize is too small or if there was no
previous call.

sqlnt sqResolverGetNamelnfoServiceSize(void)

Answers the size of the service name (or number) returned from the last call
to sqResolverGetNamelnfo. The primitive fails if there was no previous call.



void sqResolverGetNamelnfoServiceResultSize(char *name, sqint nameSize)

Copies the the service name (or number) into name which contains at least
nameSize bytes. The primitive fails if nameSize is too small or if there was no
previous call.

sqInt sqResolverAddressSizeGetPort(char *addr, sqlnt addrSize)

Convenience primitive that answers the port number stored in addr. Fails if
addr or addrSize is invalid.

void sqResolverAddressSizeSetPort(char *addr, sqint addrSize, sqint port)

Convenience primitive that changes the port number stored in addr to be
port. Fails if addr or addrSize is invalid.

4 Socket communications

The new API provides replacements for the communications primitives that
accepted or answered raw host and/or service addresses. Such addresses are
now always transferred to/from the image as opaque socket addresses.

void sqSocketBindToAddressSize(SocketPtr s, char *addr, sqInt addrSize)

Binds the socket s to the socket address addr of size addrSize. The primitive
fails if addr or addrSize is invalid or if the underlying call to bind () fails.

void sqSocketListenBacklog(SocketPtr s, sqint backlog)

Starts listening on s for incoming connections with the given backlog size.
The primitive fails if backlog is greater than 1 and s is not stream-oriented, or
if the underlying call to 1listen() fails.

void sqSocketConnectToAddressSize(SocketPtr s, char *addr, sqInt addrSize)

Connects the socket s to the given socket address. The primitive fails if addr
or addrSize is invalid.

sqInt sqSocketLocalAddressSize(SocketPtr s)

Answers the size of the local socket address for the connection associated
with socket s.

void sqSocketLocalAddressResultSize(SocketPtr s, char *addr, int addrSize)

Copies the local address of the connection associated with s into addr which
contains at least addrSize bytes. The primitive fails if addrSize is too small.



sqInt sqSocketRemoteAddressSize(SocketPtr s)

Answers the size of the remote (peer) socket address for the connection
associated with socket s.

void sqSocketRemoteAddressResultSize(SocketPtr s, char *addr, int addrSize)
Copies the remote (peer) address of the connection associated with s into
addr which contains at least addrSize bytes. The primitive fails if addrSize is too

small.

sqInt sqSocketSendUDP ToSizeDataBufCount(SocketPtr s, char *addr, sqint addrSize,
char *buf, sqint bufSize)

Sends bufSize bytes of data from buf to the UDP socket whose address is
stored in addr of size addrSize bytes.

sqInt sqSocketReceiveUDP DataBufCount(SocketPtr s, char *buf, sqint bufSize)

Receives at most bufSize bytes into buf from the socket s. The address of
the most recent sender is available via the sqSocketGetRemoteAddress interface.



