
Plan 9 Authentication in Linux

Ashwin Ganti ∗

ABSTRACT
In Linux, applications like su and login currently run as
root in order to access authentication information and set
or alter the identity of the process. In such cases, if the ap-
plication is compromised while running as a privileged user,
the entire system can become vulnerable. An alternative
approach is taken by the Plan 9 operating system from Bell
Labs, which runs such applications as a non-privileged user
and relies on a kernel-based capability device working in co-
ordination with an authentication server to provide the same
services. This avoids the risk of an application vulnerability
becoming a system vulnerability.

This paper discusses the extension of Linux authentication
mechanisms to allow the use of the Plan 9 approach with
existing Linux applications in order to reduce the security
risks mentioned earlier. It describes the port of the Plan 9
capability device as a character device driver for the Linux
kernel. It also describes the port of the Plan 9 authentica-
tion server and the implementation of a PAM module which
allows the use of these new facilities. It is now possible to
restrain processes like login and su from the uncontrolled se-
tuid bit and make them run on behalf of an unprivileged user
in Linux.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection—
Authentication

General Terms
Authentication

∗Ashwin Ganti was with the Department of Computer Sci-
ence, University of Illinois at Chicago, IL, USA. He is now
with Google Inc., Mountain View, CA 94043 USA and can
be contacted at aganti@google.com

1. INTRODUCTION
Authentication is any process by which a system verifies that
someone is who they claim to be. This usually involves a
user name and password but it is also done using hardware
tokens, biometrics etc. The anatomy of authentication in-
volves two aspects, one is proving who you say you are and
the other part is to change the owner of the process to the
authenticated user.

Historically, Linux authentication was based on the passwd
and shadow files kept in /etc which contained both a hashed
password and various information about the user (such as
her home directory and default shell). Applications heavily
depended on these files which led to less extensible code.
Moreover if a new authentication mechanism was introduced
it required all the applications (like login, su etc.) that use
the authentication information be rewritten to support it.

Pluggable Authentication Modules (PAM) [10] [2] were cre-
ated to provide more effective ways to authenticate users.
PAM provides a generic framework enabling uniform au-
thentication of user applications. It enables user applica-
tions to perform authentication without actually knowing
the implementation details of the underlying mechanisms.
It is usually done through a password based authentication
mechanism but also supports a challenge response interac-
tion. In order to use a particular authentication scheme (ex:
Kerberos) to authenticate a user, an application can dynam-
ically link a PAM module that implements that authentica-
tion scheme. Any PAM module which is written using the
PAM framework exposes a generic set of API/functions to
the applications. Applications simply call the functions de-
fined in the module passing in the credentials of the user.
The advantage of this framework is that any change that oc-
curs in the authentication mechanism does not require the
applications to be retrofitted to support it.

While PAM is a convenient way of authenticating the users
from the perspective of an application, it results in having
the authentication code run in the same address space as
the application and might be circumvented. Since it is just
a library, an application using PAM must operate at the
capability level which is necessary to provide the service.
It does not have any increased level of privilege over the
application using it and hence the onus of protecting the
environment in which PAM operates is on the application.

As mentioned earlier, the second part of authentication is

the changing of the process ownership to the authenticated
user. Historically, the ability to change the user id associ-
ated with a process was among a group of actions (such as
mounting file systems, raw device access, or shutting down
the system) which could only be performed by the super
user. Applications (such as login, ping, and mount) which
required these facilities used a special permission bit, named
setuid, which would always execute the application with su-
per user privileges even when started by a normal user. The
danger in this approach was that flaws in these applications
could enable privilege escalation which would allow normal
users to become the super user or otherwise compromise the
system.

The Linux capability system was introduced to subdivide
the actions typically associated with the super user to limit
the security risk of applications which required a particu-
lar privileged operation. Instead of granting applications
such as ping and mount super-user privileges via the set-
uid bit, they are only given the capabilities they need to
perform their function. This should prevent an application
such as ping, which only requires the super user capabil-
ity to directly access network devices, from being subverted
to change the user identity of the process. However, this
approach does not reduce the risk for applications such as
su and login which require the capability to change the
user identity. The existing capability system does not gov-
ern which users a process may change its identity to. In
other words, the same vulnerability described earlier exists
for all applications involved with authentication such as su

and login.

Having an application run with the capability to change
ownership to any user does not achieve necessary privilege
separation [9] and if the application has been compromised
then an attacker can get super user access to the system.
A new mechanism is required which isolates authentication
from applications and provides more granular control over
critical system capabilities such as the ability to set the user
and group identity of a process.

The Plan 9 research operating system from Bell Labs [8]
solves most of the above security issues in a very graceful and
modular way. Authentication in Plan 9 is centered around
a per user agent called factotum [7] following the lead of the
SSH agent [11]. Factotum is a trusted process that holds
the secure keys of the user and negotiates authentication
protocols on behalf of the user. Factotum is implemented as
a file server in Plan 9 and applications that need authenti-
cation services communicate with factotum using the usual
file system calls (read, write etc.) The applications need not
be compiled with the authentication or cryptographic code
and can remain agnostic of the underlying mechanism which
is understood by factotum. Moreover the applications need
not be retrofitted for the changes in the authentication pro-
tocols. Isolating the privileged code to a single more trust-
worthy component makes it possible to run the applications
at a weaker privilege level.

Plan 9 avoids privilege escalation in applications such as su

and login through a granular capability system which only
provides the ability to switch identity to a specific user in-
stead of granting these applications the ability to switch to

any user. When a process such as the login program needs
to change its identity it proves to the host owner’s factotum
that it has the required credentials to run as that identity
by running an authentication protocol. Host owner is a user
in Plan 9 that basically owns the local resources of a ma-
chine like the local disks, network interfaces, etc. The Host
owner ’s factotum and the login program then interact with
a kernel implemented capability system to authorize login

to change its identity to the specific user authenticated by
the protocol. Because the capability is specific to the au-
thenticated identity, the login application can not be com-
promised to obtain super user (or even Host owner) privi-
leges. This is a more secure way of handling things when
compared to Linux, which allows applications such as login
to switch their identity to any user.

Our effort here is to achieve similar results for Linux by
adopting the authentication mechanisms and Plan 9 notion
of capabilities. This work is going to be very useful in getting
closer to a goal of getting a Linux machine to boot with no
processes running as root.

There are numerous advantages:

• Applications like su and login need not run as the
super user.

• The capability system is managed by the kernel which
is inherently trusted and more secure.

• Capabilities to change identity are restricted to specific
authenticated identities by the authentication system.

• Protocols used to communicate with the authentica-
tion server have been extensively researched and are
proven to be more secure than the traditional proto-
cols used for the communication of the authentication
information. They are not subject to the ”man in the
middle” attacks that the other protocols suffer from.

• This is a cluster/networked solution in the sense that
the same authentication mechanism which works for a
stand alone machine can be scaled up to be used to
perform authentication over a clustered environment.

We have implemented the Plan 9 capability device for the
Linux kernel, porting the authentication server as part of
this effort. We wrote a PAM module to perform the au-
thentication with the host owner’s factotum.

The rest of the paper delineates the components needed for
Linux to make use if this new mechanism while not being
disruptive to the existing applications’ code, explains the
implementation details of the port and concludes by men-
tioning some future improvements and related work.

2. COMPONENTS NEEDED IN LINUX
This section delineates the various components required to
make the existing applications in Linux use the new authen-
tication mechanism of Plan 9. The implementation details
of each of the components needed is explained in Section 4.

2.1 Plan 9 authentication server for Linux
Each security domain in Plan 9 has a trusted authentica-
tion server where all the shared keys of the users are main-
tained. It also offers services for users and administrators
to create and disable accounts, manage keys, etc. It is com-
prised of two services, authsrv and keyfs. authsrv is a net-
work service which is similar to the Key Distribution Center
(KDC) in Kerberos. It brokers the network authentication
sessions. The passwd utility can be used to change account
passwords on the authentication server. keyfs is a user level
file system that manages an encrypted database of user ac-
counts. We have ported authsrv and keyfs for Linux using
the pre-existing Plan 9 from User Space [6] package which
already included a Linux port of factotum. We also ported
changeuser which is a utility to create and manage user ac-
counts in the authentication server. A side effect of using
these Plan 9 tools is that a copy of the user’s account in-
formation must be maintained in the authentication server
separate from the typical Linux locations, but this can be
avoided in the future by building a Name Service Module
configurable through nsswitch.conf that retrieves the user’s
credentials from the Plan 9 authentication server.

2.2 Linux Capability Device
In Plan 9, a process that wants to change its identity authen-
ticates with the host owner’s factotum. The host owner’s
factotum on successful authentication creates a capability,
gives a hash of it to the kernel and passes the capability to
the process that requested the change of identity. Once the
process receives the capability it proves to the kernel that it
has a valid capability and the kernel changes the uid of the
process. Further details on the semantics and working of the
cap device for the Linux kernel can be found in Section 4.1.

We have implemented the Plan 9 capability device for the
Linux kernel as a character device driver. This is perhaps
the most important part of the authentication scheme. The
capability device managed by the kernel is used to allow
factotum to grant permission to a process to change the
user id. It exposes two device files which are used by the
factotum to grant the capability and the process to use that
capability.

2.3 Pluggable Authentication Module
We have implemented a Pluggable Authentication Module
(pam devcap) that is an interface for the process to authen-
ticate against the host owner’s factotum. With regard to the
security limitations of PAM discussed in the earlier sections,
it should be noted that PAM does not perform the actual au-
thentication. It is just used as an interface to interact with
the factotum which performs the actual authentication. In
this manner, all authentication code runs in a separate ad-
dress space from the application instead of being linked in as
a shared library. By using the PAM framework, the use of
factotum to authenticate users is transparent to applications
using the existing PAM API.

The user process passes the target user’s credentials to
pam devcap which authenticates them against the host owner’s
factotum. pam devcap uses the p9cr authentication protocol
to talk to the host owner’s factotum. It gets back from the
factotum a capability in the form of a string which it stores
for later use. Whenever the user id needs to be changed,

the application requests the PAM module to do so, which
retrieves the stored capability and writes it to /dev/capuse

after which the process runs on behalf of the new user.

3. OVERVIEW OF THE PORT
Figure 1 shows a sequence diagram of the overall flow be-
tween a user process that wants to change a user id, the
PAM module and the host owner’s factotum. The user pro-
cess contacts pam devcap initially to authenticate the tar-
get user’s credentials. The PAM module contacts the host
owner’s factotum and talks to it using the p9cr protocol.

p9cr is a textual challenge-response protocol which is typi-
cally done between a factotum and a local program and not
between two factotums as in the case of other authentication
protocols in Plan 9. The protocol with factotum is textual
where in the client writes a user name, server responds with
a challenge, client writes a response, server responds with ok

or bad. Typically this information that is being exchanged is
wrapped in other protocols like p9sk1 by the local programs
before being sent over the network.

The factotum using the information from the authentication
server validates the target user’s information. If the creden-
tials (user name and password) are valid then it creates a
capability, hashes it and writes it to /dev/caphash which is
a write only file opened by the host owner’s factotum at boot
time. It also passes this back to the PAM module. Now the
PAM module stores this capability for later use and sends
back PAM SUCCESS to the user process informing the suc-
cessful authentication of the target user. When the process
wants to change the user id it contacts the PAM module
again which basically writes the earlier saved capability to
/dev/capuse and returns PAM SUCCESS. The application
now runs on behalf of the target user.

4. IMPLEMENTATION
We shall now describe the implementation details of each of
the components that are needed in Linux to use the Plan 9
authentication mechanisms.

4.1 Capability Device for Linux
Figure 2 shows the flow of control in the cap device.

1. A process running on behalf of user1 sends a message
to the the host owner’s factotum requesting a capabil-
ity to change its user id from user1 to user2.

2. The host owner’s factoum performs an authentication
protocol(p9cr) with the requesting process to authen-
ticate the target user’s credentials provided by the re-
questing process.

3. Once the host owner’s factotum knows that the re-
questing process gets the valid credentials of the user2
it creates a capability of the form
user1@user2@randomString and writes a HMAC SHA1
hash of it to /dev/caphash.

4. The kernel internally maintains a linked list of these
hashes written by the host owner’s factotum. It adds
the newly created hash to the list.

Figure 1: Overview of the port

Figure 2: Flow of control in the cap device

5. The requesting process get the capability string and
simply writes it to /dev/capuse.

6. Once the capability is written to /dev/capuse the ker-
nel checks whether the process requesting the uid change
is actually running on behalf of user1. If the process
is not, then the kernel throws an error and the write
operation fails.

7. The kernel now splits the capability string and creates
a HMAC SHA1 hash of user1@user2 with the random-
String.

8. It does a linear search amongst the existing list of
hashes for this hash and if it finds a match it changes
the effective user id of the process to user2.

9. Once used the capability is discarded by the kernel,
i.e. it is removed from the list of hashes.

10. If there is no match found, or if there is a time out on
the capability then the kernel returns an error and the
write operation to /dev/capuse fails.

4.2 Authentication server
We have made minimal changes to the existing authentica-
tion server code in Plan 9 and ported it to Linux using the
libraries provided by Plan 9 from User Space in Linux. The
authentication server, as of now, needs to be set up using
xinetd or the like. This is only a temporary solution. We
plan to avoid xinetd and setup the auth server in a more
graceful manner in the future.

4.2.1 Steps to setup the authentication server under
xinetd

1. Create the /etc/xinetd.d/authsrv file containing the
following:

service authsrv

{

socket_type = stream

protocol = tcp

wait = no

user = root

server = /usr/local/plan9/bin/authsrv

server_args = -d

}

2. Create an entry in /etc/services

authsrv 567/tcp #Plan 9 auth server

3. Make an entry in $PLAN9/ndb/local for the auth server

authdomain = <domain of the machine

running the auth server>

auth = <host name of the machine running

auth server> port = 567

4. Make sure the $NAMESPACE environment variable is set.
This is essential for the authentication server to run.
Typically it defaults to /tmp/ns.$USER.$DISPLAY. Set
it manually if not set by default using the following
command :

export NAMESPACE=<directory path>

5. Restart xinetd

sudo /etc/init.d/xinetd restart

4.2.2 User Account Setup
The authentication information of Linux users is generally
handled by storing them in /etc/ files or some kind of naming
service (configurable through nsswitch.conf). But the au-
thentication protocol(p9cr) that happens between the host
owner’s factotum and the process is brokered by the authen-
tication server. The authentication server in Plan 9 stores
the shared keys of the users including the account informa-
tion. Since the Plan 9 shared key protocols(p9cr) are being
used to authenticate the users to the host owner’s factotum
it is necessary for the existing user’s accounts to be created
again in the authentication server. We have ported the Plan
9 changeuser utility to help add user accounts to the auth
server.

changeuser <userid>

Users are represented by integer uids in the Linux kernel un-
like the Plan 9 case where the users are represented as string
identifiers. The capability that is written to /dev/caphash

and /dev/capuse is of the form user1@user2@randomstring
where user1 and user2 are the string values of the user iden-
tifiers in the case of Plan 9.

NFS solves a similar problem by having a user space map-
ping daemon that is contacted by the kernel to get the in-
teger user ids for the string names that are supplied. The
easiest way to solve this problem in our case was to sim-
ply create the user names in the authentication server by
the string equivalents of the uids (for example: changeuser
1000). Now when the capability is created by host owner’s
factotum it would be the actual integer userids in string form
that the kernel can understand. Whenever the capability is
written to the kernel it is converted to an integer. Since
the kernel understands the integer equivalent of this it sim-
ply changes the userid of the process to the target user id
thereby avoiding the requirement of a user space mapping
daemon.

Please remember that this is a temporary solution. It would
be preferable to have a user space mapping daemon in the
long run.

4.3 Pluggable Authentication Module
The PAM module pam devcap authenticates against the host
owner’s factotum, retrieves the capability and whenever the
user space application wants to change the user credentials,
writes the capability to /dev/capuse.

4.3.1 pam_devcap configuration with PAM framework
1. Copy the module’s shared object file pam_devcap.so

to /lib/security.

2. Include the following line in the beginning of the PAM
configuration file for the application using this module
- su in our example.

auth requisite pam_devcap.so

auth signifies the PAM module’s interface type. Mod-
ules with this interface type authenticate the user by
a password. The module also can change the user’s
credentials such as Kerberos tickets or group member-
ships.

requisite is the control flag for the pam devcap mod-
ule. It tells PAM what to do with the result of the
module(pass/fail). Since PAM modules can be stacked
in a particular order, control flags decide in what way
does the result of the current module affect the final
authentication outcome of the user. The requisite

flag tells PAM that the module has to return success
for the authentication to continue. The user is notified
immediately if the module fails.

pam_devcap.so is the name of the module that im-
plements the PAM interface.

3. pam_devcap.so implements the service module’s equiv-
alent methods for the auth interface type i.e.
pam sm authenticate() and pam sm setcred(). In
pam sm authenticate() the PAM module authenticates
against the host owner’s factotum and retrieves the ca-
pability for the user. The capability is used to change
the user id in pam sm setcred().

4.3.2 Logical Flow of authentication using PAM
Refer to Figure 1 for the overall flow.

1 The application makes a call to the pam authenticate()
supplying the target user’s credentials to the PAM
module.

2 The PAM framework internally routes it the service
module’s (i.e. pam devcap) implementation of the
pam authenticate() method which is
pam sm authenticate().

3 The authentication happens in the pam sm authenticate()
method of the PAM module.

4 The target user’s credentials are passed over to the
host owner’s factotum which validates them by con-
tacting the authentication server. Upon successful au-
thentication it returns the capability as a string to the
PAM framework.

5 The PAM module saves this capability using
pam set data() and returns PAM SUCCESS to the user
application.

6 When the application wants to change the user id it
makes a call to the pam setcred() function.

7 The service module equivalent of the pam setcred()
is the pam sm setcred() function which is internally

called by the PAM framework. The PAM module re-
trieves the capability that it saved earlier using the
pam get data() function. It writes this capability to
/dev/capuse which results in the kernel changing the
user id of the process to the target user id of the pro-
cess.

4.3.3 Zero Application Code Change
While working on the PAM module we discovered that there
might be no need to make any changes to the application’s
code in order to use this new authentication mechanism.
The application calls pam authenticate() to authenticate the
user and then does a setuid() to the authenticated user.
Since the purpose of this new authentication mechanism is
to eliminate the need for applications to run as root and
setuid(), we might expect that at the minimum we need to
modify the code to remove the setuid() system calls. But
we can avoid this and practically achieve a zero application
code change.

Basically pam authenticate() uses the pam devcap PAM mod-
ule which internally writes to the cap device to change the
user id. Hence, by the time pam authenticate() returns the
user is already running on the behalf of the new user. So the
subsequent setuid() call would effectively be a no-op. This
means that it requires no code changes to user space appli-
cations to use the cap device as long as they use PAM to
authenticate users.

Unfortunately the PAM module’s implementation is not com-
plete at this point to demonstrate this.

5. FUTURE WORK
We focused on implementing the capability device to the
Linux kernel and tried to demonstrate its use through the
PAM framework. Additional improvements on the port could
make it more secure and help applications to seamlessly use
this authentication mechanism.

• The Plan 9 kernel starts a factotum at boottime which
runs on behalf of the host owner. In order to do this
the kernel needs a credential to start the factotum. In
a similar case, the authentication server requires a cre-
dential in order to start. Plan 9 uses a secret password
stored in nvram which the kernel prevents anyone from
reading and uses it start the authentication server and
the host owner’s factotum. A similar mechanism needs
to be developed for use with Linux in order to maxi-
mize security.

• The authentication server that is currently ported does
not have the ndb database file that implements the
speaks-for relationship for the host id. If an application
needs to use the speaks-for relation then it would be
useful if ndb support is provided.

• The authentication server is currently setup to run
with xinetd or the like. It would be useful to make
it run as an independent service if more security is
desired.

• If scalability is required then we recommend a user
space mapping daemon that maps the string user names

and the integer user ids. This daemon would be con-
tacted by the kernel to resolve the user names it gets
after parsing the capabilities written to the device files
(by the process and the host owner’s factotum).

• Linux uses Naming Services to retrieve the user’s login
information. Applications that are used to the get-
pwnam() calls to retrieve the user account informa-
tion might find an NSS module (configurable through
nsswitch.conf) that contacts the Plan 9 authentication
server useful.

6. RELATED WORK
Privilege separation by running a separate process for each
user is widely used. qmail [5] forks off a new process(and
then does a setuid) for each user to deliver email.

Linux implements the concept of Compartmented Mode Work-
stations that have split up root privileges into about 30
separate capabilities [4], including a setuid capability. The
programs do not run as root and assume privileges when
needed and drop them when they don’t thus implementing
least privilege.

SELinux [3] provides protection by limiting the privileges of
a process based on the user on behalf of which it runs and
also the process’s executable.

In comparison to these methods the cap device provides fine-
grain one-time use capability to limit the setuid privileges
further by allowing only the host owner’s factotum to create
the capability and managing the capability system in the
kernel thereby providing better security.

7. CONCLUSION
Applications like su and login can now run on behalf of
an unprivileged user instead of being setuid to root. This
proves that the capability device for the Linux kernel is a
very useful authentication mechanism considering the exist-
ing alternatives.

Since these applications run as root, an attacker can get root
access to the system by exploiting any kind of security flaw
in the application (buffer overflows etc.). By implement-
ing this new authentication mechanism, even if these appli-
cations are compromised we do not give away much when
compared to the former case. This achieves better privilege
separation thereby providing better security.

We have completed the implementation of the capability
device for the kernel (about 300 lines of kernel code) and
the port of the authentication server and Key File System
of Plan 9 to Linux. Both the authentication server and
keyfs use the framework provided by p9p (Plan 9 from User
Space).

We still need to complete the PAM module’s implementation
in order for it to be used by user space applications like su.
We are currently in the process of debugging the module
after which it will be made available at [1]

We believe that the Plan 9 authentication and capability

mechanisms can enhance the existing Linux security model,
and hope that our prototype implementation can be used as
a foundation for future improvements

8. ACKNOWLEDGMENTS
We would like to thank

• Eric Van Hensbergen1 for his continual support through-
out the entire work.

• my adviser Prof. Jon Solworth2 for providing invalu-
able guidance throughout this research.

• Latchesar Ionkov3 for giving me useful feedback and
comments on the capability device driver’s code.

This work was supported in part by the National Science
Foundation under Grants No. 0627586 and 0551660. Any
opinions, findings and conclusions or recommendations ex-
pressed in this paper are those of the author and do not
necessarily reflect the views of the National Science Foun-
dation.

9. REFERENCES
[1] Implementation code url.

http://code.google.com/p/p9authlinux/source/browse.

[2] Linux-pam.
http://www.kernel.org/pub/linux/libs/pam.

[3] Security enhanced linux.
http://www.nsa.gov/selinux/.

[4] J. L. Berger, J. Picciotto, J. P. L. Woodward, and
P. T. Cummings. Compartmented mode workstation:
Prototype highlights. IEEE Trans. Softw. Eng.,
16(6):608–618, 1990.

[5] D. Bernstein. Qmail. http://cr.yp.to/qmail.html.

[6] R. Cox. Plan 9 from user space.
http://swtch.com/plan9port.

[7] R. Cox, E. Grosse, R. Pike, D. L. Presotto, and
S. Quinlan. Security in plan 9. In Proceedings of the
11th USENIX Security Symposium, pages 3–16,
Berkeley, CA, USA, 2002. USENIX Association.

[8] R. Pike, D. Presotto, S. Dorward, B. Flandrena,
K. Thompson, H. Trickey, and P. Winterbottom. Plan
9 from Bell Labs. Computing Systems, 8(3):221–254,
Summer 1995.

[9] N. Provos, M. Friedl, and P. Honeyman. Preventing
privilege escalation. 12th USENIX Security
Symposium, August 2002.

[10] V. Samar. Unified login with pluggable authentication
modules(pam). In CCS ’96: Proceedings of the 3rd
ACM conference on Computer and communications
security, pages 1–10, New York, NY, USA, 1996. ACM
Press.

[11] T. Ylonen. SSH - secure login connections over the
internet. Proceedings of the 6th Security Symposium)
(USENIX Association: Berkeley, CA):37, 1996.

1Research Staff Member in the Novel Systems Architecture
group at IBM’s Austin Research Lab
2http://www.rites.uic.edu/∼solworth/index.html
3Technical Staff Member at Los Alamos National Labora-
tory

